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The Einstein ring radius for microlensing

/2RS 2GM DL
QE = T where RS = 2 and D= mDS

> & -
> < >
-
>

S L Ds 0
2/19
Point source point mass microlensing — single lens
The basic thin lens equation in units of the Einstein ring radius 0 is:
1
u=0- 7 where u is source distance; 6 is image distance
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Point source point mass lensing — N lenses

In units of O (or Rg) for the total lensing mass the basic thin lens equation relating the vector
source position s to the vector positions r of the multiple images is:

N
r—ry
S=r1— E €j "5
— -y
J=1
where r; and ¢; are the lens positions and mass fractions respectively.

The required solution to this equation, ie determine the (multiple) r values from the (single) s
value is not straight forward, so —

Two basic approaches to solving problem:

1. Inverse ray tracing
2. Semi-analytical methods
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Solution methods

Inverse ray-tracing:
A brute force technique that exploits simplicity of equation in the reverse direction and
locates image plane pixelated positions consistent with given source positions.

Finite source effects are directly included, and creation of magnification maps makes this
method relatively efficient for static lens systems.

At VUW: Korpela 2007 (PhD thesis)

Semi-analytical methods
Start by directly determining image positions and proceed from there.

At VUW: MSc thesis project (2010)
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The lensing equation in complex coordinates

m  Using complex coordinates yields great simplifications:
1 source position s — w
2 image positions r — z
3 lens positions  r; — r; (now complex)

m  Lens equation becomes:

N N
Z——rj €5
w:z—g G — w:z—g —
|2 — ] —Z-T
j=1

J=1

Which is still complicated in separate real and imaginary form,
m  But combining this with the complex conjugate version:

N €
- Z——rj

Jj=1

allows the elimination of z, and rearranging gives an equation in the unknown complex

variable z alone.
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Obtaining the lensing polynomial

m  The lensing equation for N lensing masses in the unknown (complex) image position z is:

Noe Yo
k j — -
z—w—g — =0 where Dk:E I+ (0 —Ty)
I)k - Z—7T;
k=1 j=1
m  For two lensing masses this looks like:
€1 €2
zZ—w— —
€1 €2 _ €1 €2 o

+ + (@ —-1) + + (0 —T2)

Z—TI Z —T9 Z—TI Z—T9

A polynomial is produced by appropriate multiplications in order to eliminated the fractions.

Even for the two mass system the direct expressions (produced by Maple for example) are

relatively complicated, and this complexity rapidly increases with N.

7/ 19




The lensing equation polynomials

In order to obtain efficient expressions for the polynomial coefficients one needs to identify by eye
common factors and use a program like Maple to check for mistakes.

We have used two approaches — the VUW method and the Rhie method (Rhie 2002). And we

have coded the results as C functions.

m  Some properities of our C functions:
number polynomial lines of internal relative

of lenses order code  variables speed
2 5 30 30 1
3 10 86 87 6.6
4 17 189 172 54
5 26 ? ? ?

Finding the polynomial roots:
This can only be done numerically. We use the method of Jenkins & Traub (1972) combined with

root polishing using the Laguerre method
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Point source magpnification
The magnification of each image is obtained from the infinitesimal area change produced by the
transformation z = g(w) from source plane w(u, v) to image plane z(z,y)

image plane source plane
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But, it is the inverse transformation w = f(z) that can be readily determined = the

determinant of the Jacobian.
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Jacobian & infinitesimal area change

We have:

And image and source infinitesimal areas are:

0Azy = Odxdy
0Auy = 0Py0Qy — 6Q,0P,

L (o i,

Hence source/image(k) ratio is:
A _ Dudu 0000 _
§Ay, Oz dy  Oydy F

Therefore total point source magnification is:
N

- 1
magnification = Z —
—~ | Jk|
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The simplified form for the Jacobian

m  The Jacobian for the area transformation therefore takes the form

_oudu oudn
Oz dy Oyox

m  But, we can change variables as follows using the chain rule and exploit the properties of complex

variables for this situation

w+w w—w
and v = -
2 21

z=x+1iy and Z=2x—1y

u =

m  Which yields the surprisingly simple and tractable form for .J
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Critical and caustic curves

The critical curves in the image plane are the locii of points where J = (0 and the
corresponding caustics are the transformed points into the source plane.

Thus using the above form for J we have
2 0w al €;
0z Z (z —rj)? ‘
J=1

where €' defines the unit circle at the origin in the complex plane

8_5)
0z

Transforming this equation to standard polynomial form yields a polynomial of order 2N in
the complex variable z. This can then be solved numerically for values 0 < ¢ < 27 to yield
the critical curve.
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Including finite source effects

Hexadecapole approximation [Gould (2008)]
Evaluate a number (13) of point-source magnifications across the source disk and use these
to approximate the analytical weighted integral of magnification field.

Polygon method [Gould & Gaucherel (1997) — “Stokes’ Theorem”]

1. Uniformly bright sources: represent images using polygons with N vertices, then

determine polygon area:
N

A= Z(%—l?/i - xz‘yi—l)

i=1
2. Including limb darkening: Use a network of “concentric” polygons and appropriately
weight annular areas

Image centred inverse ray tracing [Bennett (2010)]
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Choosing the best polygon vertices
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Finite source crossing a caustic
Image curves Image curves
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Light curve fitting procedures

We are using a combination of targetted grid search methods along with MCMC y? surface
explorations.
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OGLE—-2006—BLG—109 lightcurve
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