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The amount of deflection for a ray of light passing close to a gravita-
tional mass can be worked out from the null geodesic the ray follows [MTW
1972,Weinberg 1972; Schneider, Ehlers, Falco 1999 ].

Such expressions involving Elliptical Integrals were first given by Darwin
in 1959.

The calculation of higher order deflection terms, from the null geodesic,
has been performed by Iyer & Petters 2007; Virbhadra & Ellis 2000; Frittelli,
Killing & Newman 2000.

More recently, for strong gravitational field, lensing calculations have been
done by Bisnovatyi-Kogan & Tsupko 2008.
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The deflection of a light ray can be alternately calculated by considering
the light ray to be passing through a material medium, due to the effect of
gravitation.

This concept of equivalent material medium was discussed by Balazs as
early as in 1958, to calculate the effect of a rotating body on a light ray.

Plebanski had also utilized this concept in 1960, to study the scattering of
a plane electromagnetic wave by gravitational field. Plebanski also mentioned
that this concept of equivalent material medium was first pointed out by
Tamm in 1924.

Atkinson (1965) investigated the allowed trajectories of light rays near a
massive star and obtained an expression for velocity of light at an arbitrary
point.

A general procedure for utilizing this concept, for deflection calculation
was worked out by Felice (1971).

Later this concept was also used by Mashoon (1973,1975), to calculate the
deflection and polarization due to the Schwarzschild and Kerr black holes.

Fischbach and Freeman (1980), derived the effective refractive index of
the medium and calculated the second order contribution to the gravitational
deflection.

Nandi & Islam (1995) and Evans, Nandi & Islam(1996) derived and used
the effective refractive index values to calculate gravitational time delay and
trajectories of light rays.

Sereno (2003) had used this idea, for gravitational lensing calculation by
using Fermat’s principle.

More recently Ye and Lin (2008), emphasized the simplicity of this ap-
proach and calculated the gravitational time delay and the effect of lensing.
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1 The effective refractive index

The Schwarzschild equation (1961) ( with rg =
2GM
c2

):

ds2 = (1− rg
r
)c2dt2 − r2(sin2θdφ2 + dθ2)− dr2

(1− rg

r
)

(1)

Written in an isotropic form (Landau & Lifshitz 1980):

ds2 = (
1− rg/(4ρ)

1 + rg/(4ρ)
)2c2dt2 − (1 +

rg
4ρ

)4(dρ2 + ρ2(sin2θdφ2 + dθ2)) (2)

where

ρ =
1

2
[(r − rg

2
) + r1/2(r − rg)

1/2] (3)

The quantity (dρ2 + ρ2(sin2θdφ2 + dθ2)) has the dimension of square of
infinitesimal length vector d−→ρ .

Setting ds = 0, we get the velocity of light :

v(ρ) =
(1− rg

4ρ
)c

(1 + rg

4ρ
)3

(4)

Now

v(r) = v(ρ)
dr

dρ

= v(ρ)[(1 +
rg
4ρ

)2 − rg
2ρ

(1 +
rg
4ρ

)]

= (
rg − 4ρ

rg + 4ρ
)2c (5)
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Substituting the value of ρ from Eqn (2) in Eqn.(6), we get:

v(r) = (
rg/2− 2ρ

rg/2 + 2ρ
)2c

= (
rg/2− ((r − rg

2
) + r1/2(r − rg)

1/2)

rg/2 + ((r − rg

2
) + r1/2(r − rg)1/2)

)2c

= (
rg − r − r1/2(r − rg)

1/2

r + r1/2(r − rg)1/2
)2c

=
c(r − rg)

r
(6)

Therefore the refractive index n(r) :

n(r) =
c

v(r)
=

r

r − rg
(7)

Here we note that, the values of refractive index derived following ei-
ther Atkinson (1965) or Fischback & Freeman (1980) lead to an expression
containing terms of some infinite converging series.

Fischback & Freeman (1980) used an infinite convergent series ( 1+ A/r
+ B/r2+...) for refractive index n(r), where A = rg (Schwarzschild radius )
and B is some function of rg.

Fischback and Freeman (1980) estimated light deflection by a massive
object by truncating the series at some stage, whereas no deflection values
were calculated with Atkinson’s refractive index expressions.
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2 The trajectory of a light ray

The light ray and the gravitational mass together define a plane.

The equation of a ray in (r, θ) plane can be written as ( Born & Wolf
1947) :

θ = A.
∫ ∞

r⊙

dr

r
√
n2r2 − A2

(8)

The trajectory is such that n(r).d always remains a constant, where d is
the perpendicular distance between the trajectory of the light ray from the
origin (gravitational mass) and the constant is taken here as A.

Here light is approaching from asymptotic infinity ( r = −∞) to the
gravitational mass. The closest distance of approach, for the approaching
ray is b and the ray goes to r = ∞, after undergoing certain amount of
deflection (4φ), by the presence of gravitational mass.

The parameter b can be replaced by solar radius r⊙. When the light ray

passes through the closest distance of approach (ie r = b or r⊙), the tangent

to the trajectory becomes perpendicular to the vector −→r ( which is −→r ⊙).

Therefore, we can write A = n(r⊙)r⊙.

With this geometry, the value of deflection (4φ), can be written as Ye
and Lin (2008):

4φ = 2
∫ ∞

r⊙

dr

r
√

( n(r).r
n(r⊙).r⊙

)2 − 1
− π (9)
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We denote the above integral in Eqn. (9) by I and write

I =
∫ ∞

r⊙

dr

r
√

( n(r).r
n(r⊙).r⊙

)2 − 1

= n(r⊙)r⊙
∫ ∞

r⊙

dr

r
√

(n(r).r)2 − (n(r⊙).r⊙)2

= n(r⊙)r⊙
∫ ∞

r⊙

dr

r2

√

√

√

√

1
(1−

rg

r
)2
−

r2⊙r−2

(1−
rg

r⊙
)2

(10)

Change the variable to x = rg

r
and introduce a = rg

r⊙
:

I = n⊙r⊙
∫ 0

a

−x−2rgdx

r2
√

1
(1−x)2

− x2

(a(1−a))2

= n⊙r⊙
∫ 0

a

−x−2rgdx

xr2
√

1
(x(1−x))2

− 1
(a(1−a))2

=
n⊙r⊙

rg

∫ a

0

dx

x
√

1
(x(1−x))2

− 1
(a(1−a))2

=
n⊙r⊙

rg

∫ a

0

(1− x)dx
√

1− (x(1−x))2

(a(1−a))2

(11)
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We denote the quantity 1/(a(1− a)) by D. =⇒

D =
r2
⊙

rg(r⊙ − rg)
(12)

We split the above Integral, as a sum of two Integrals:

I = (
n⊙r⊙

rg
)[

∫ a

0

(1− 2x)dx
√

1−D2x2(1− x)2
+

∫ a

0

xdx
√

1−D2x2(1− x)2
]

= (
n⊙r⊙

rg
)
∫ a

0

(1− 2x)dx
√

1−D2x2(1− x)2
+ (

n⊙r⊙

rg
)
∫ a

0

xdx
√

1−D2x2(1− x)2

= (
n⊙r⊙

rg
)I1 + (

n⊙r⊙

rg
)I2 (13)

where I1 =
∫ a
0

(1−2x)dx√
1−D2x2(1−x)2

and I2 =
∫ a
0

xdx√
1−D2x2(1−x)2

.

Now

n⊙r⊙

rg
=

1

1− a
.
1

a
=

1

a(1− a)
= D

Changing the variable from x to y = Dx(1− x), =⇒ D(1− 2x)dx = dy.

The upper and lower limits x = 0 and x = a =⇒

y = 0 and y = Da(1− rg

r⊙
) = 1

a(1−a)
a(1− a) = 1.
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Therefore for the first part in Eqn (13) we can write :

(
n⊙r⊙

rg
)I1 =

∫ a

0

D(1− 2x)dx
√

1−D2x2(1− x)2

=
∫ 1

0

dy√
1− y2

= [sin−1y]10
= π/2 (14)

Therefore, from Eqn (9), one may write the amount of deflection as:

4φ = 2
∫ ∞

r⊙

dr

r
√

( n(r).r
n(r⊙).r⊙

)2 − 1
− π

= 2(
n⊙r⊙

rg
)I1 + 2(

n⊙r⊙

rg
)I2 − π

= π + 2(
n⊙r⊙

rg
)I2 − π

= (
2n⊙r⊙

rg
)
∫ a

0

xdx
√

1−D2x2(1− x)2

= 2D
∫ a

0

xdx
√

1−D2x2(1− x)2
(15)
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One can obtain ( using Mathematica etc....)

∫ xdx
√

1−D2x2(1− x)2
= 2

(
√
D +

√
D − 4)E − (2

√
D − 4)F

D(
√
D + 4−

√
D − 4)

(16)

where E ≡ E(p, q2) is the Elliptic Integral of first kind and F ≡ F (−q, p, q2)
is Incomplete Elliptic Integral of Third kind.

The arguments are :

p = arcsin

√

√

√

√

(
√
D − 4−

√
D + 4)(

√
D − 4 + (2x− 1)

√
D)

(
√
D − 4 +

√
D + 4)(

√
D − 4− (2x− 1)

√
D)

(17)

q =
(
√
D − 4 +

√
D + 4)

(
√
D − 4−

√
D + 4)

(18)

Finally :

4φ = 4

{

(
√
D +

√
D − 4)E − (2

√
D − 4)F

(
√
D + 4−

√
D − 4)

}x=a

x=0

(19)

where D =
r2⊙

rg(r⊙−rg)
and a = rg/r⊙.
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For a Sun grazing ray, as a test case :

The closest distance of approach ∼= solar radius

r⊙ = 695500 km

Schwarzschild radius for Sun rg = 3 km.

We get a = (rg/r⊙) = 1/231833 and D = 231834.

Finally, using the expression

4φ = 4

{

(
√
D +

√
D − 4)E − (2

√
D − 4)F

(
√
D + 4−

√
D − 4)

}x=a

x=0

(20)

we get

4φ = 8.62690E10−6 radians or 1.77943 arc sec.
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3 Comparison with other expressions

Fischback and Freeman had used an infinite convergent series ( 1+ A/r +
B/r2+...) for refractive index n(r),

where A = rg (Schwarzschild radius ) and B is some function of rg.

Considering only the first order term in n(r) ie n(r) = 1+A/r, deflection
term was calculated as : 2rg/r

2
⊙ or 4GM/(c2r⊙).

Present work :

the refractive index n(r) = r/(r − rg) and can be expressed as:

n(r) = 1 + a+ a2 + a3 + ..... (21)

where a = rg/r⊙.

So, refractive index in Fischback and Freeman(1980) and in the present
work are the same in weak field limit.

Ye and Lin (2008), had also calculated first order deflection term and the
refractive index value they used was n(r) = exp(2GM/(rc2)). This expres-
sion for refractive index is also same as what has been derived in the present
work, for weak field limit(considering terms up to first order). However, these
authors did not derive higher order terms for gravitational deflections.
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4 Tests under Boundary conditions :

No field condition:

From the present work, it is clear that when one takes n(r) = 1, space is
flat and there will be no deflection. This is true when we substitute n(r) = 1
in Eqn. (9), we get 4φ = 0.

Under weak field conditions:

In the present work, the weak field value of refractive index is n(r) = 1+a
and under weak field we can also write 1/D = a(1−a) ∼ a and x(1−x) ∼ x,
as x, a << 1. Substituting, these weak field approximations, into the final
integral expression (cnf. Eqn (15) ) :

4φ = 2D
∫ a

0

xdx
√

1−D2x2(1− x)2

∼ 2
∫ a

0

xdx√
a2 − x2

= 2a

= 2
rg
r⊙

=
4GM

c2r⊙

(22)

This confirms the expression for deflection derived here for strong field
coincides to the standard expression under weak field limit.
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In the present work, the quantity D was used ( in the equations from (14)
to (21)) as a substitution for 1/(a(1− a)). Now, D can be expressed by the
converging series :

D = 1/a+ 1 + a+ a2 + a3 + ..... (23)

Therefore, in the weak field limit in order to calculate the value of deflec-
tion, we can substitute D = 1/a in Eqn (20), instead of D = 1/(a(1 − a)).
Thus by making the above approximations D ∼ 1/a and a << 1, into Eqn
(20), as and when appropriate, we get:

4φ = 4

{

(
√
D +

√
D − 4)E − (2

√
D − 4)F

(
√
D + 4−

√
D − 4)

}x=a

x=0

∼ (2/a) {E − F}x=a
x=0

(24)

With the same weak field approximation for the quantities in Eqns. (17)
and (18), we obtain p ∼ arcsin(

√
2a) at x = 0, p ∼ 0 at x = a and

q = −1/(2a). As a result we get under weak field limit:

4φ = −(2/a)(E(arcsin(
√
2a), 1/(4a2))− F (1/(2a), arcsin(

√
2a), 1/(4a2))

(25)

where E is the Elliptic Integral of first kind and F is Incomplete Elliptic
Integral of Third kind, as discussed earlier. Now by substituting the numer-
ical value of a = rg/r⊙ we can get the weak field deflection value from Eqn

(25).
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The higher order deflection terms have been also evaluated under strong
field, by using methods other than material medium approach.

Darwin(1961), had calculated first order strong field deflection term, using
logarithmic series.

Iyer and Petters (2007) had calculated the deflection term in the strong
field, with an expression containing complete and incomplete elliptical in-
tegrals. From this general expression, the authors could calculate the first
order strong deflection term, calculated earlier by Darwin(1961).

NB: Major portions of the work presented here, have appeared in Astro-
physics ( Springer) December 2010, Volume 53, Number 4, 560-569,
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