Dark Matter Determinations from *Chandra* Observations of Quadruply Lensed Quasars

David Pooley Eureka Scientific davepooley@me.com

Paul Schechter Saul Rappaport Jeffrey Blackburne

- Microlensing by stars causes discrepancies with lens models. Blackburne, DP, & Rappaport (2006), DP et al. (2006), DP et al. (2007)
- X-rays give cleanest microlensing signal.
- We have improved the data reduction and analysis.
- Ratio of dark matter to stellar material determines probability of microlensing effects. e.g., Schechter & Wambsganss (2004)
- Ensemble of 14 systems indicates the integrated mass through lensing galaxies at R \approx 5 kpc is 85% 95% dark matter.

Flux Ratio Anomalies are a result of stellar microlensing

Blackburne, DP,

 $F_{\rm A}/F_{\rm B} = 1.10 \pm 0.16$ $F_{\rm A}/F_{\rm B} = 1.7$ $F_{\rm A}/F_{\rm B} = 0.10 \pm 0.01$

Similar discrepancies in RX J0911+0551 Morgan et al. 2001 and PG 1115+080 DP et al. 2006

X-rays give cleanest microlensing signal

Schematic of quasar accretion disk

Einstein radius of star in typical lensing galaxy:

~ 3 $\sqrt{(m/M_{\odot})}$ × 10⁻⁶ arcsec

(for $D_L \approx 1$ Gpc)

Strong microlensing effects are observed

DP et al. 2007

Improved X-ray data reduction gives more precise measurement

Use dithering of satellite

Use Sub-pixel Event Resolution Position of an event is based on how charge cloud is split amongst neighboring pixels.

Improved X-ray image modeling gives more precise measurement

β profile: $I(r) = A(1 + (r/r_0)^2)^{-\beta}$

Probability of microlensing depends on dark/stellar ratio

Custom microlensing maps are made for each system for a variety of dark/stellar ratios. Strong demagnifications are unlikely for very high (100%) and very low (1%) stellar fractions.

10% Stars

Magnification (relative to average)

100% Stars

Magnification (relative to average)

Multiply distributions to form joint P(*F*_X)

Marginalize over *F*_X to obtain likelihood of stellar fraction

Most parameters are marginalized over

For each system, we marginalize over uncertainties and multiple observations.

Ensemble of quads indicates 85–95% dark matter at $R \approx 5$ kpc

Two Bayesian methods are used to determine most likely dark/stellar ratio — the integrated matter fraction through lensing galaxies at impact parameters between 2 – 8 kpc.

- Cleanest microlensing signal in X-rays
- Strength of microlensing effects depends on composition of matter
- 85 95% dark matter at ~5 kpc impact parameter from galaxy center
- Independent evidence for existence of dark matter
- Next: M/L

Questions? davepooley@me.com