Next-Generation Microlensing: Preliminary Results from a Pilot Experiment

Dan Maoz, Yossi Shvartzvald Tel-Aviv University in collaboration with OGLE, MOA, microFUN

What is the frequency of extrasolar planetary systems? Are they solar analogs?

Microlensing has probed a unique region of planetary parameter space...

Gould et al. 2006, 2009

...near the Einstein radii of stars ~ their "snow lines".

Gould et al. 2006, 2009

But, only ~15 microlensing planets to date, not competitive with other methods.

Why so few?

Observational focus on bright, high-magnification (~100) events.

Udalski et al. 2005

Udalski et al. 2005

High-magnification (~100x) events are:

<u>Good:</u> ~100% sensitivity to planets projected near Einstein radius,

+ high S/N light curves even with small and amateur telescopes.

<u>Bad:</u> Rare events (\sim 1%) \rightarrow \sim 7 events/year \rightarrow 1-2 planets/year.

As opposed to high-mag (central caustic) events,

Low-magnification (planetary caustic) events:

Lower planet detection efficiency, but much more common:

Potential for tens of microlensing planets/year.

A. Cassan

Beaulieu et al. 2006

Need network of 1-2m class telescopes with degree-scale imagers for continuous monitoring of many low-mag events in search of planetary perturbations:

"Generation II microlensing"

June-July 2010: A generation-2 pilot experiment:

Wise Obs., Israel, 1m, 1 deg²

OGLE IV, Chile, 1.3m, 1.4 deg²

PTF, California, 1.2m, 7.8 deg²

MOA-II, NZ, 1.8m, 2.3 deg²

OGLE MOA

OGLE MOA PTF

OGLE MOA PTF WISE

June-July 2010 pilot experiment:

two 3-week periods,

8 deg² of bulge with highest lensing rate covered quasicontinuously by all 4 telescopes,

cadences 20-40 min

238 ongoing events during pilot, 81 inside 3-telescope footprint

MOA 2010-BLG-341

80	5385	5390	53
00	5505	JJ 70	55

What can we discover?

A numerical simulation of the experiment

- Lens population with:
- Distributions of primary lens mass, distance, velocity that produce observed distribution of event timescales
- Add solar-like planetary system at random inclination, each planet at random phase
- "Snow line" scaling of system size:

$$(M/M_{\odot})^{s}$$

Galactic bulge (Baade's window)

Dominik 2006

Ray tracing to generate light curves; apply time sampling and photometric errors from the real experiment; search for

For set of physical parameters (e.g. fraction of stars with planets, snow-line index) and experimental parameters (e.g. duration, cadence) repeat simulated experiment many times.

"optimal" Gen-2

Summary and Outlook

- 1. Generation-2 has begun challenging but feasible
- 2. Potential for few to tens of planets/year
- 3. Improved constraints on planetary frequency and properties in unique regions of planetary parameter space.