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1. Contour Integration 

Concept



• Our purpose is to calculate microlensing light 

curves

• … that is the magnification of a given source that transits 

behind a given binary lens model.

Our goal
1. Contour Integration Concept
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• For a given source position and size and for a given lens 

model, we want to calculate the magnification factor
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• We must find the images and calculate their area.

Our goal
1. Contour Integration Concept
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• Contour integration concept: 

The area enclosed in a curve is expressed by a simple 

contour integral on the boundary.

• We only need to find the boundaries of the images

• A surface integral becomes a one-dimensional integral

• In principle this is much faster and very elegant

• In practice, much more work is required to keep everything 

under control.

Contour Integration Concept
1. Contour Integration Concept



• Green’s theorem: 
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• … can be viewed as the two-dimensional version of 

Stokes’ theorem
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• Note: I is the counterclockwise boundary of I.

Green’s Theorem
1. Contour Integration Concept



• If we want the area of the domain I we must choose 
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• Then the line integral takes the equivalent forms

Green’s Theorem
1. Contour Integration Concept

• Note: xdx is a pseudo-scalar in two dimensions.
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• Green’s theorem generalizes the interpretation of 

Riemann’s integral as the area under the graph of a 

function.

Green’s Theorem
1. Contour Integration Concept
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• Green’s theorem allows us to calculate the area of a 

microlensing image by a contour integral on the image 

boundary.

• Implementation:

a) Sample the source boundary

b) Invert the lens equation to find the image boundaries

c) Re-order the points in the sample

d) Approximate the contour integral using the sample

Implementation scheme
1. Contour Integration Concept



• 1987: Schramm & Kayser, A&A 174, 361

Use of contours in cosmological gravitational lensing

• 1993: Dominik, Diploma thesis

1995: Dominik, A&AS 109, 507

Calculation of the areas by Green’s theorem

• 1997: Gould & Gaucherel, ApJ 477, 580

1998: Dominik, A&A 333, L79

Application to microlensing

• 2006: Dong et al., ApJ 642, 842

Hybridization with inverse ray-shooting

• 2007: Dominik, MNRAS 377, 1679

Adaptive grid search

• 2010: Bozza, MNRAS 408, 2188

Advanced contour integration

History
1. Contour Integration Concept



2. Basic Contour Integration



• Parameterization of the source boundary:

Source boundary
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• Generic sampling for :
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• Sampling for the source boundary:
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2. Basic Contour Integration
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• For each point in the source boundary, we must solve the 

lens equation

Inversion of the lens equation
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2. Basic Contour Integration

• can be eliminated using the conjugate equation.

• We end up with a fifth order polynomial equation
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• The coefficients ci are functions of the separation a, the 

mass ratio q and the source position .



• A fifth order polynomial equation can be solved 

numerically by several methods (e.g. Laguerre’s method is 

implemented in “Numerical Recipes” by Press et al.).

Inversion of the lens equation
2. Basic Contour Integration

• As a result, for each point yi in the source boundary we 

have 5 points xi,I in the lens plane.

• These 5 roots must be validated by the original lens 

equation
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• If yi is inside a caustic, all 5 roots will be acceptable, 

otherwise, two roots will be rejected. 
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• Numerical errors may arise here if the lens parameters are 

very extreme (e.g. for very low q, and/or 0 or very large).

Inversion of the lens equation
2. Basic Contour Integration

• Several checks can be performed (consistency of parities, 

lens equation residual large for more than two images, …) 

• The root finding routine is the slowest step in the whole 

contour integration method.

• The purpose of all optimizations will be to increase the 

accuracy with fewer points in the boundaries.



II
III

I

IV

V

Reconstruction of image boundaries
2. Basic Contour Integration

• The roots xi,I lie somewhere on the image boundaries. But 

where?

• We need to associate the roots xi,I at step i with the roots 

xi-1,I of the step i -1.

• The simplest way is to use the least distance criterium.

• Only same parity solutions can be associated.
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Reconstruction of image boundaries
2. Basic Contour Integration

• The roots xi,I lie somewhere on the image boundaries. But 

where?

• We need to associate the roots xi,I at step i with the roots 

xi-1,I of the step i -1.
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• The simplest way is to use the least distance criterium.

• Only same parity solutions can be associated.



Reconstruction of image boundaries
2. Basic Contour Integration

• The same can be done at destruction of two images.

• If two new images are created at step i, we can recognize 

them as the last two unmatched roots.

• We must keep track of pairing between image boundaries 

when they are created or destroyed (see next).
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Reconstruction of image boundaries
2. Basic Contour Integration

• The same can be done at destruction of two images.

• If two new images are created at step i, we can recognize 

them as the last two unmatched roots.
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• We must keep track of pairing between image boundaries 

when they are created or destroyed (see next).



Reconstruction of image boundaries
2. Basic Contour Integration

• There remains a possibility of wrong associations for very 

stretched images and poor sampling. Error control will take 

care of this.

• We end up with a collection of image boundaries, made up 

of a sequence of points.

• Each boundary has a definite parity.

• Some boundaries are complete (having n points as in the 

source boundary sample).

• Some other boundaries start with a creation episode; 

some others end with a destruction episode;

some start with a creation and end with a destruction.



Some examples of boundaries
2. Basic Contour Integration
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• Boundaries I, II, III start at =0 and end at =2

• Boundaries IV and V start at some c and end at d



Some examples of boundaries
2. Basic Contour Integration

II

III

I

IV

V

c

d

• Boundaries II, III start at =0 and end at =2

• Boundary IV starts at c and ends at d

• Boundary I start at =0 and ends at d

• Boundary V starts at c and ends at =2



Contour integration by polygonal
2. Basic Contour Integration

• As in the trapezium approximation of the Riemann integral, 

we can approximate the different versions of the contour 

integral as follows
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Contour integration by polygonal
2. Basic Contour Integration

• The trapezium approximation gives the area of the 

polygonal defined by our image boundary sample

x1
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Contour integration by polygonal
2. Basic Contour Integration

• The trapezium approximation gives the area of the 

polygonal defined by our image boundary sample
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• Typically, the area is underestimated.



Contour integration by polygonal
2. Basic Contour Integration

• The residual is positive for convex boundaries.

• It can be negative for boundaries with a concavity.



Contour integration by polygonal
2. Basic Contour Integration

• The contour integral assumes a counterclockwise 

orientation for the boundaries.

• The source parameterization we used is counterclockwise.

• Positive parity image boundaries preserve the orientation, 

negative parity boundaries reverse the orientation.

• Therefore, we must multiply the contour integrals by the 

parities of the boundaries:
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Contour integration by polygonal
2. Basic Contour Integration

• Boundaries starting with a creation or ending in a 

destruction are treated in the same way.

• We only need to add a connection term between the 

image pairs.
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Summing up…
2. Basic Contour Integration

To set up your contour integration routine you must:

• Run a root finder routine for each point in the source 

boundary.

• At each step you must put the roots in the correct image 

boundary (least distance criterium) and keep track of 

created and destroyed pairs.

• Calculate the contour integral by polygonal approximation 

for each boundary.

• Sum up the contour integrals with the correct parity and 

add a connection term for each creation/destruction.

• Adaptive grid search is an alternative to root finding.



Adaptive grid search
2. Basic Contour Integration

Start with a big square and then divide it in smaller and 

smaller squares until you isolate the image boundary.



3. Advanced Contour 

Integration



Order of the error
3. Advanced Contour Integration

Let us estimate the order of the error

• At each step, the contribution of the interval  to the 

contour integral is

• The trapezium approximation is actually

• Expanding in powers of , the difference is of third order
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Parabolic correction
3. Advanced Contour Integration

Why should we go to higher orders?

• To get an accurate estimate with less points in the sample.

• As the slowest routine is the inversion of the lens equation, 

by reducing the number of points, we can speed up the 

code.

• If we add the following correction to the trapezium
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Parabolic correction
3. Advanced Contour Integration

How do we calculate the wedge product                   ?

• Switching to complex notations, the derivatives can be 

computed in terms of the lens mapping and the source 

parameterization.
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Parabolic correction for connection terms

3. Advanced Contour Integration

• For connection terms between created/destroyed pairs we 

use
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• Denser sampling needed!
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Error control
3. Advanced Contour Integration

• In all numerical computations it is fundamental to have an 

estimate of the errors.

• The error estimators must be reliable but also cheap.

• We must be able to assess the accuracy of our 

calculation.

• Conversely, we should know how dense our sampling 

should be to reach a given accuracy.

• Time is precious: if we control the errors, we can avoid 

useless computations.

• Error estimators should warn us of possible failures.



Error estimators
3. Advanced Contour Integration

• Here are three proposals
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• These work in a complementary way and are 

combinations of quantities already calculated.



Error estimators for connection terms
3. Advanced Contour Integration

• Here are the versions for connection terms
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Error estimate at step i
3. Advanced Contour Integration

• Our error estimate for the step i is thus
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Hidden images
3. Advanced Contour Integration

• Finally, it may happen that two images are created and 

destroyed within steps i and i + 1, without leaving traces.

• We then calculate the distance gi between the two ghost 

images at each step.

• If gi reaches a minimum, we check that by linear 

interpolation we do not go below zero, otherwise we add 

an error
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Optimal sampling
3. Advanced Contour Integration

• The total error in the area of all images is
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• At this point we are able to check if we have reached the 

target accuracy  in the magnification:

• If not, we must increase the sampling.

• Can we do it in a clever way?



Optimal sampling
3. Advanced Contour Integration

• We can pick the interval with the largest error
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• … and add another point in the sample in the middle of 

this interval:
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• Then we just need to recalculate 

the contour integral and the error 

estimators in the new sub-

intervals.

• In this way, sampling is increased 

only where needed, avoiding 

useless calculations.



Optimal sampling
3. Advanced Contour Integration

• We can start with a basic four points sample and then add 

new points according to the rule of largest Ei.
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Optimal sampling
3. Advanced Contour Integration

• We can start with a basic four points sample and then add 

new points according to the rule of largest Ei.
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Optimal sampling
3. Advanced Contour Integration

• We can start with a basic four points sample and then add 

new points according to the rule of largest Ei.
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Optimal sampling
3. Advanced Contour Integration

• We can start with a basic four points sample and then add 

new points according to the rule of largest Ei.
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Optimal sampling
3. Advanced Contour Integration

• We can start with a basic four points sample and then add 

new points according to the rule of largest Ei.
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Optimal sampling
3. Advanced Contour Integration

• We can start with a basic four points sample and then add 

new points according to the rule of largest Ei.
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Optimal sampling
3. Advanced Contour Integration

• We can start with a basic four points sample and then add 

new points according to the rule of largest Ei.
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Optimal sampling
3. Advanced Contour Integration

• We can start with a basic four points sample and then add 

new points according to the rule of largest Ei.
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Optimal sampling
3. Advanced Contour Integration

• We can start with a basic four points sample and then add 

new points according to the rule of largest Ei.
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Optimal sampling
3. Advanced Contour Integration

• We can start with a basic four points sample and then add 

new points according to the rule of largest Ei.
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Limb darkening
3. Advanced Contour Integration

• Up to now, we have assumed a uniform brightness source.

• In general, the source 

profile is a function f(r), 

normalized in such a way 

that 

  12

1

0

 drrrf

• However, physical stars have a limb-darkened profile, e.g. 

Milne’s linear law 
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Limb darkening
3. Advanced Contour Integration

• The only known way to deal with limb darkening with 

contour integration is by dividing the source in annuli.

• Each source annulus is magnified by microlensing. The 

exact contribution to the total amplification is 
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Limb darkening
3. Advanced Contour Integration
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• In each annulus we instead use a uniform brightness given 

by the limb-darkened profile averaged on the annulus

• The approximate contribution to the amplification is
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• The latter is the magnification factor for a uniform disk of 

radius ri, calculable by contour integration.



Errors in limb darkening
3. Advanced Contour Integration

• The difference between the exact and approximate 

expression is of third order in the annulus thickness.

• The estimators we use are
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Sampling the source profile
3. Advanced Contour Integration

• We start with the two extremal annuli: the boundary (r=1) 

and the center (r=0).

• Given a source sampling                                      , we split 

the annulus with the largest error.

10 10  nrrr 

• The new circle is put at an intermediate radius      so that 

the two new annuli give the same contribution to the 

source luminosity:

r

       1 jj rFrFrFrF

• We keep introducing annuli until the total error falls below 

the target accuracy.



Sampling the source profile
3. Advanced Contour Integration

0.0 0.2 0.4 0.6 0.8 1.0

2.0

2.5

3.0

3.5

r

I
I



Testing
3. Advanced Contour Integration

• In order to test our code, we can build maps with different 

target accuracies and take the difference.

δμ=10-2
δμ=10-5



Testing
3. Advanced Contour Integration

• This is a scatter plot of error vs magnification

(target accuracy is 10-2).



Testing
3. Advanced Contour Integration

• This is a scatter plot of number of sampling points vs 

magnification (target accuracy is 10-2).



Testing
3. Advanced Contour Integration

• Gain in the number of sampling points with the parabolic 

correction.

δμ=10-2

δμ=10-3



Testing
3. Advanced Contour Integration

• Gain in the number of sampling points with the optimal 

sampling.



Testing
3. Advanced Contour Integration

• Number of points vs magnification with limb darkening.



Testing
3. Advanced Contour Integration

• Summing up, at δμ=10-2 we get

- a speed-up of 4 thanks to parabolic correction

- a speed-up ranging from 3 to 20 thanks to optimal 

sampling

- a slow-down from 2 to 10 if we include limb darkening

• No redundant calculation thanks to error estimators!



4. Downhill fitting



Fitting a microlensing event
4. Downhill fitting

• Once we are able to calculate the microlensing 

magnification for a given lens model and source position, 

we can try to fit microlensing events.

• Binary microlensing events are characterized by a 

minimum of 7 parameters.

• Note that the calibrations of all datasets (background and 

source fluxes) can be found analytically by a least-squares 

fit.

• How do we find a best fit of the microlensing parameters?

  Bii FtfFy  p,*



Fitting a microlensing event
4. Downhill fitting

• Make an initial guess (a point in the parameter space)

• Find a minimum in 2

(Downhill fit)

• Explore the minimum and refine the best solution

(Markov chain)



Downhill fitting
4. Downhill fitting

• Concept: find a direction going down and just follow it…

• Several possibilities: different convergence speeds.

• Steepest descent

• Gauss-Newton method

• Levenberg-Marquardt algorithm



Fitting Problem
4. Downhill fitting

• We want to find a minimum in 

    



n

i

ii tfy
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22 ,pp

where p is the vector of microlensing parameters, (ti,yi) are 

the data points and f(ti,p) is the model at time ti according 

to parameters p.

• If we are in pi, where should we choose pi+1? 



Steepest descent
4. Downhill fitting

• The gradient of 2 is just
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• The steepest descent is then implemented by choosing

2
1  ii pp

•  is determined by a search along the line.



Gauss-Newton method
4. Downhill fitting

• Let us set                        .
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• The approximate solution for  is obtained by a linear set 

of equations

Δpp  ii 1

• If  is such that pi+1 is a minimum, then
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• Convergence is not guaranteed if we are too far from 

minimum



Levenberg method
4. Downhill fitting

• Interpolates between the two methods, switching from 

Gauss-Newton to steepest descent when the first fails.
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• We modify the normal equations by introducing a 

parameter 

• If  is small, the normal equations work as in Gauss-

Newton.

• If  is large, the new term dominates and  is rotated 

toward the steepest descent direction.



Levenberg-Marquardt algorithm
4. Downhill fitting

• Steepest descent may be inefficient if there are directions 

in which 2 is very flat.
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• The final version of the modified normal equations is

• In Levenberg-Marquardt algorithm, we start from a value 

of  close to 1.

• We calculate ; if                                      , we accept the 

new point                       and decrease .

• If not, we reject the new point and increase .
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Implementation of Levenberg-Marquardt

4. Downhill fitting

• We need to calculate the gradient vector 
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• The derivatives require the calculation of magnification at 

two points spaced by dpi. This is the slowest step.

• The resolution of normal equations can be done by 

standard Gauss method, Cholesky decomposition…

• Levenberg-Marquardt algorithm (nearly) always finds a 

local minimum.

• It is also very very fast.

• It might get stuck at a local minimum.

• How do we find the best minimum?



Jumping out of minima

4. Downhill fitting

• One possibility to enlarge our search is to add a penalty on 

the 2 function.

• Once we find the first minimum, we try to fill it with a 

bumper and run the fit again.

• If the bumper is small, the fit will still remain in the same 

hole.

• If the bumper is large enough, the fit will jump out of the 

hole and discover a different minimum.



Jumping out of minima

4. Downhill fitting



Conclusions

4. Downhill fitting

• Contour integration is a very elegant way to calculate the 

microlensing magnification.

• More complicated than ray shooting but very effective.

• Limb darkening treatment possible to arbitrary accuracy

• Parabolic correction and optimal sampling do boost 

contour integration code. Error control is essential.

• Downhill fitting is the fastest way to find a minimum from a 

given initial condition.

• Yet any exploration of the parameter space is always 

partial. 
• There is no practical way to check that any given χ2-

minimum is really the lowest possible one.


