

INCREASE THE DETECTION RATE OF LOW-MASS PLANETS

MOA-2006-BLG-130

Julie Baudry Under the direction of Philip Yock

> The MOA dome, Mt John, Tekapo, South Island of New Zealand

Introduction

Introduction

Introduction

Planetary perturbation and magnification

MOA – 2006 – BLG – 130

I – Gravitational Microlensing

Light from the source star is bent into an Einstein ring around the lens star

Bohdan Paczynski, Ann. Rev. Astron.. Astrophys. 34, 419 (1996)

$$r_{E} = \left(\frac{4 G M_{I}}{c^{2}} \cdot \frac{D_{I} (D_{I} - D_{s})}{D_{s}}\right)^{1/2}$$

Binary lens configuration

Planet parameters:

- q = mass ratio (planet / lens)
- · d = distance lens planet
- · angle from the y axis is fixed at 0

Track parameters:

- $\cdot u_{min}$ = minimum impact parameter
- $\cdot \rho$ = source star radius
- $\cdot \theta$ = source track angle
- the time to cross the Einstein ring and the time of minimum impact are choosen randomly, in the range of real events
- \cdot no parallax

(All distances are given in unit of $r_{_{\rm F}}$)

$$\begin{array}{lll} x' & = & x - \frac{m_1 x}{x^2 + y^2} - \sum_{i=1}^n \frac{m_i (x - x_i)}{(x - x_i)^2 + (y - y_i)^2}, \\ \\ y' & = & y - \frac{m_1 y}{x^2 + y^2} - \sum_{i=1}^n \frac{m_i (y - y_i)}{(x - x_i)^2 + (y - y_i)^2}. \end{array}$$

Creating theoretical microlensing lightcurves from magnification maps, L. Philpott, 2005

 ✓ Magnification maps are computed for 9 systems [lens + planet] using the inverse ray shooting technique

⇒ fractionnal maps

·Lydia Philpott, 2005; C.S. Botzler, 2006; Sarah Holderness, 2008; Yvette Perrott, 2009.

$$\begin{array}{lll} x' & = & x - \frac{m_1 x}{x^2 + y^2} - \sum_{i=1}^n \frac{m_i (x - x_i)}{(x - x_i)^2 + (y - y_i)^2}, \\ \\ y' & = & y - \frac{m_1 y}{x^2 + y^2} - \sum_{i=1}^n \frac{m_i (y - y_i)}{(x - x_i)^2 + (y - y_i)^2}. \end{array}$$

Creating theoretical microlensing lightcurves from magnification maps, L. Philpott, 2005

 ✓ Magnification maps are computed for 9 systems [lens + planet] using the inverse ray shooting technique

⇒ fractionnal maps

- \checkmark Theoritical light curves
 - ▷ No parallax

 \Rightarrow Source track angle : $\theta = 0$

 \Rightarrow for each system, 3 values of the source star radius are tested $\rho = \{0,001; 0,002; 0,005\}$

 \Rightarrow 13 values of u_{min} are have been simulated, in a range of $|u_{min}| \in [0; 0, 03]$

·Lydia Philpott, 2005; C.S. Botzler, 2006; Sarah Holderness, 2008; Yvette Perrott, 2009.

	I	II	III
Geometry	The source transits the lens		
Range of u _{min}	u _{min} < ρ		
Consequences on the planetary perturbation	Low mass planets with q < 3.10 ⁻⁵ undetectable		

	I	II	III
Geometry	The source transits the lens	The planet is closer to the Einstein ring than the length of an arc.	
Range of u _{min}	u _{min} < ρ	$ ho$ < u _{min} < $\frac{2 ho}{1-d}$	
Consequences on the planetary perturbation	Low mass planets with q < 3.10 ⁻⁵ undetectable	Low mass planets with q > 10 ⁻⁵ detectable and perturbation approximately independent of umin, i.e. sensitivity independent of Amax	

		I	III	
Geometry	The source transits the lens	The planet is closer to the Einstein ring than the length of an arc.	The planet is further away than the length of an arc.	
Range of u _{min}	u _{min} < ρ	ρ < u _{min} < <mark>2ρ</mark> 1-d	$\frac{2\rho}{1-d} < u_{min}$	
Consequences on the planetary perturbation	Low mass planets with q < 3.10 ⁻⁵ undetectable	Low mass planets with q > 10 ⁻⁵ detectable and perturbation approximately independent of umin, i.e. sensitivity independent of Amax	Sensitivity greatest at high magnification, but low mass planets undetectable	

		II	III	
Geometry	The source transits the lens	The planet is closer to the Einstein ring than the length of an arc.	The planet is further away than the length of an arc.	
Range of u _{min}	u _{min} < ρ	ρ < u _{min} < 2ρ 1-d	$\frac{2\rho}{1-d} < u_{min}$	
Consequences on the planetary perturbation	Low mass planets with q < 3.10 ⁻⁵ undetectable	Low mass planets with q > 10 ⁻⁵ detectable and perturbation approximately independent of umin, i.e. sensitivity independent of Amax	Sensitivity greatest at high magnification, but low mass planets undetectable	

→ Transit events insensitive to low-mass planets

- → Transit events insensitive to low-mass planets
- Moderate magnification events sensitive to low mass planets quite close to the ring
- → More events occur at lower magnifications, but larger telescopes are needed to monitor them

- → Transit events insensitive to low-mass planets
- Moderate magnification events sensitive to low mass planets quite close to the ring
- → More events occur at lower magnifications, but larger telescopes are needed to monitor them
- →Low mass planets not detectable if they are not close to the ring

III - MOA-2006-BLG-130 : event in zone I

MOA data

http://www.phys.canterbury.ac.nz/moa/microlensing_alerts.html

✓ Using the same code than previously, magnification maps are computed for 27 couples (q ; d):

$$\begin{cases} q = 10^{-4} , 3.10^{-4} , 10^{-3} \\ d = 0.3 , 0.5 , 0.7 , 0.8 , 0.85 \end{cases} \begin{cases} q = 3.10^{-6} , 10^{-5} , 3.10^{-5} \\ d = 0.8 , 0.85 , 0.9 , 0.95 \end{cases}$$

✓ Using the same code than previously, magnification maps are computed for 27 couples (q ; d):

 $\begin{cases} q = 10^{-4} , 3.10^{-4} , 10^{-3} \\ d = 0.3 , 0.5 , 0.7 , 0.8 , 0.85 \end{cases} \begin{cases} q = 3.10^{-6} , 10^{-5} , 3.10^{-5} \\ d = 0.8 , 0.85 , 0.9 , 0.95 \end{cases}$

 \checkmark We use a χ^2 marginalisation method to determine the best model:

- Fixed parameter : source track angle $\boldsymbol{\theta}$
- No parallax

III - MOA-2006-BLG-130 : event in zone I

chi² for mb06130

· Best fits and single lens parameters:

q	d	ρ	θ	U _{min}	t _e	t _o	χ²
3.10-4	0.7	0.0022 ± 0.0001	0	0.0002 ± 0.0001	3951.9862 ± 0.0002	18.91 ± 0.005	359.18
10-4	0.85	0.0022 ± 0.0001	0	-0.0001 ± 0.0001	3951.9862 ± 0.0002	18.955 ± 0.005	364.44
0	0	0.0022 ± 0.0001	-	-0.0002 ± 0.0001	3951.9862 ± 0.0002	19.1 ± 0.005	464.93

III - MOA-2006-BLG-130 : event in zone I

→ Finer simulations could be done in zones of lowest chi².

III – MOA-2006-BLG-130 : event in zone I

- → Finer simulations could be done in zones of lowest chi².
- → Data are too sparse to be assertive on the presence of a planet.

III – MOA-2006-BLG-130 : event in zone I

- → Finer simulations could be done in zones of lowest chi².
- → Data are too sparse to be assertive on the presence of a planet.
- → Other phenomena could be the cause the deviation to the light curve :

Thanks to the Physics Department of the UoA, New Zealand, to the Earth and Sky company and astronomers of the Mt John Observatory.

Very special thanks to Philip Yock.

AND THANK YOU FOR YOUR ATTENTION!