Parallel Computing and Gravitational Microlensing Modelling

Ian Bond

Massey University, Auckland, New Zealand

Salerno Microlensing School Salerno, 18–19 January 2011

Assumptions/Purpose

- You are all involved in microlensing modelling and you have (or are working on) your own code
- this lecture shows how to get started on getting code to run on a GPU
- then its over to you . . .

Outline

- 1 Need for parallelism
- 2 Graphical Processor Units
- 3 Gravitational Microlensing Modelling

Grand Challenge Problems

- A grand challenge problem is one that cannot be solved in a reasonable amount of time with todays computers'
- Examples:
 - Modelling large DNA structures
 - Global weather forecasting
 - N body problem (N very large)
 - brain simulation
- Has microlensing modelling become a grand challenge problem?

Paralel Computing

- Parallel Computing is use of multiple computers, or computers with multiple internal processors, to solve a problem at a greater computational speed than using a single computer (Wilkinson 2002).
- How does one achieve parallelism?

Achieving Parallelism

- History
 - Thinking Machines, Cray, Sun Starfire, Beowulf clusters,...
- Three ways of achieving parallelism today
 - Shared memory multiprocessor
 - Distributed Memory multicomputer
 - Graphical processing units

Flynns Classifications

- SISD. Single instruction, single data stream
 a single stream of instructions is generated by the program and operates on a single stream of data items.
- SIMD. Single instruction, multiple data stream
 instructions from program are broadcast to more than one Processor. Each processor executes the same instruction in synchronism, but using different data.
- MISD. Multiple instruction, single data stream
 a computer with multiple processors each sharing a common memory. There are multiple streams of instructions and one stream of data.
- MIMD. Multiple instruction, multiple data stream
 each instruction stream operates upon different data.

SMM Systems

- Examples: most multicore PCs
- All memory shared across all processors via a single address space
- Program using threads. OpenMP makes it easier.

DMM Systems

Distributed Memory Multicomputers: aka cluster computers. Two programming models:

- Multiple Program Multiple Data (MPMD)
 - Each processor will have its own program to execute
 - Parallel Virtual Machine (PVM) library
- Single Program Multiple Data (SPMD)
 - A single source program is written, and each processor executes its own personal copy of the program
 - MPI standard

MPI (Message Passing Interface)

- Standard for communication across several processors, developed by group of academics and industrial partners
- MPI is a standard it defines routines, not implementations
- Several free implementations exist: **openmpi** for Ubuntu.

Outline

- 1 Need for parallelism
- 2 Graphical Processor Units
- 3 Gravitational Microlensing Modelling

What are GPUs?

- A GPU (on a graphics card) offloads/accelerates graphics rendering from a CPU.
- Modern GPU functions:
 - rendering polygons
 - texture mapping
 - coordinate transformations
 - accelerated video decoding
- Manufacturers
 - NVIDIA
 - ATI

GPGPU

- General Purpose Computing on Graphical Processing Units
 - using a GPU for applications traditionally handled by a $\ensuremath{\mathsf{CPU}}$
- Stream Processing
 - stream of data
 - a series of operations applied to that stream—the kernel functions
- SPMD
 - single program, multiple data
 - related to, but not the same as SIMD

Programming GPUs

- Approach is to make use of the GPU AND the CPU
- CUDA
 - Compute Unified Device Architecture
 - Developed and distributed by NVIDIA
- OpenCL
 - tedious and not as good performance as CUDA (according to NVIDIA)

Now lets get started...

Setting Up CUDA

See http:

//www.r-tutor.com/gpu-computing/cuda-installation/cuda3.2-ubuntu

- Make sure you have a graphics card, install Ubuntu.
- Disable the nouveau nvidia driver that comes with Ubuntu. Reboot in safe graphics mode (hold down shift key)
- Install the linux developer tools and the OpenGL development driver.
- Install the CUDA development driver (after downloading from CUDA download site). Switch to console mode for this (ctrl-alt-f2).
- Download and install the CUDA toolkit. Usually in /usr/local/cuda
- Download and install the CUDA SDK samples. Usually in your personal home directory.

Check out your system

- Run the device query sample program from your CUDA SDK samples:
 - \$ cd ~/CUDASDK3.2/C/bin/linux/release/
 - \$./deviceQuery
- Look at the output:
 - How many graphics devices are there?
 - How many multiprocessors and cores?
 - How much global memory?
 - **–** . . .

Device Query Screenshot

```
File Edit View Terminal Help
iabond@it047333:~/CUDASDK3.2/C/bin/linux/release$ ./deviceQuery
./deviceOuerv Starting...
CUDA Device Ouery (Runtime API) version (CUDART static linking)
There are 2 devices supporting CUDA
Device 0: "GeForce GTX 480"
 CUDA Driver Version:
                                                 3.20
 CUDA Runtime Version:
                                                 3.20
 CUDA Capability Major/Minor version number:
                                                 2.0
 Total amount of global memory:
                                                 1610285056 bytes
 Multiprocessors x Cores/MP = Cores:
                                                 15 (MP) x 32 (Cores/MP) = 480 (Cores)
 Total amount of constant memory:
                                                 65536 bytes
 Total amount of shared memory per block:
                                                 49152 bytes
 Total number of registers available per block: 32768
 Warp size:
 Maximum number of threads per block:
                                                 1024
 Maximum sizes of each dimension of a block:
                                                 1024 x 1024 x 64
 Maximum sizes of each dimension of a grid:
                                                 65535 x 65535 x 1
 Maximum memory pitch:
                                                 2147483647 bytes
 Texture alignment:
                                                 512 bytes
 Clock rate:
                                                 1.40 GHz
 Concurrent copy and execution:
                                                 Yes
 Run time limit on kernels:
                                                 Nο
 Integrated:
                                                 Nο
 Support host page-locked memory mapping:
                                                 Yes
 Compute mode:
                                                 Default (multiple host threads can use this devic
e simultaneously)
 Concurrent kernel execution:
                                                 Yes
 Device has ECC support enabled:
                                                 Nο
 Device is using TCC driver mode:
                                                 No
Device 1: "GeForce 210"
```

GPU architecture

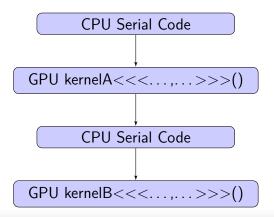
Physical layout varies among GPU makes and models, but follows these general ideas:

- GPU divided into blocks
- Each block contains one or more streaming multiprocessors
- Each SM has a number of streaming processors
 - all share the same control logic and instruction cache within an $\ensuremath{\mathsf{SM}}$
- All SPs from all SMs have access to up to 4 GB GDDR DRAM global memory
 - GDDR: graphics double data rate
 - DRAM: dynamic random access memory

NVIDIA GeForce GTX 480

CUDA processing flow

Need to identify those parts of the program that operate on the host (CPU) and the device (GPU).



First CUDA Program

Perform element-wise vector addition, with each vector element being handled by one thread

```
// Import the cuda headers, along with any other required C headers
#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device. This is executed by ONE
// stream processor
__global__ void vec_add(float* A, float* B, float* C, int N)
{
    // What element of the array does this thread work on
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < N)
        C[i] = A[i] + B[i];
}</pre>
```

```
// main routine that executes on the host
int main(void)
  int n;
  int N = 1000000:
  size t size = N * sizeof(float):
 // Allocate in HOST memory
  float* h_A = (float*)malloc(size);
  float* h_B = (float*)malloc(size);
  float* h_C = (float*)malloc(size);
  // Initialize vectors
  for (n = 0; n < N; ++n) {
    h_A[n] = 3.2333 * n:
    h_B[n] = 8.09287 * n;
  }
```

```
// Allocate in DEVICE memory (note the address of pointer argument)
float *d_A, *d_B, *d_C;
cudaMalloc(&d_A, size);
cudaMalloc(&d_B, size);
cudaMalloc(&d_C, size);

// Copy vectors from host to device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
```

```
// Invoke kernel
int threadsPerBlock = 256;
int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;
vec_add<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
// Copy result from device memory into host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
```

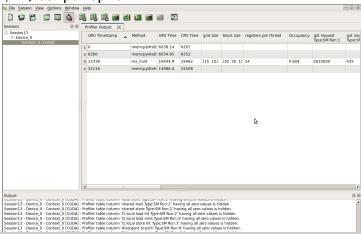
```
// Free device memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

// Free host memory
free(h_A);
free(h_B);
free(h_C);
```

Build using cuda compiler and linker
\$ nvcc -o testprog1 testprog1.cu
\$./testprog1

Run a Profile Analysis

- \$ cd /usr/local/cuda/computeprof/bin
- \$./computeprof



Important Constructs

■ Important Functions

```
cudaMalloc(device_address, size);
cudaMemcpy(dest, source, size, cudaMemcpyHostToDevice)
cudaMemcpy(dest, source, size, cudaMemcpyDeviceToHost)
```

■ Function modifier keywords

```
__global__: called by host, executed on device
__device__: called by and executed on device
__host__: called by and executed on host
```

■ Kernel Functions

```
Code to be run on an SP mykernel<<<ble>blocks_per_grid, threads_per_block>>>
```

Programming Hardware Abstractions

- host (CPU) and device (GPU)
- thread
 - concurrent code executed on an SP
 - fine grain unit of parallelism
- warp
 - group of threads executed in parallel (up to a maximum number)
- block
 - group of threads executed together and form the unit of resource assignment
- grid
 - group of thread blocks that must all complete before control is returned to the host

Organizing threads

- Threads in a warp can share instruction stream
- Each thread has its own registers and local memory
- Threads in a block can communicate by shared memory
- All threads in a grid can access the same global memory (but 200–600 cycle penalty)
- Need to decide how many blocks in the grid, and how many threads in each block.
- Can arrange blocks and threads in 1, 2, or 3 dimensions

Example: matrix multiplication

```
// Matrix multiplication kernel: C = A * B
__global__ void mx_mult(float* A, float* B, float* C, int width)
  // What is the matrix element for this thread?
  int col = blockDim.x * blockIdx.x + threadIdx.x;
  int row = blockDim.y * blockIdx.y + threadIdx.y;
  float sum = \theta:
  for (int k = 0; k < width; ++k) {
    float elementA = A[row * width + k];
    float elementB = B[k * width + coll:
    sum += elementA * elementB:
  C[row * width + col] = sum;
int main(void) {
  // 2 dimensional arrangement of threads and blocks
  int blockWidth = 30:
  int gridWidth = 15;
  dim3 dimBlock(blockWidth, blockWidth):
  dim3 dimGrid(gridWidth, gridWidth);
  mx_mult<<<dimGrid, dimBlock>>>(d_A, d_B, d_C, width);
```

CUDA Device Memory Types

GlobalMemory

- largest memory on GPU and accessible by all threads
- slowest access time \sim 200-600 clock cycles
- lifetime: application

Registers

- fastest memory, used to store local variables of a single thread
- lifetime: thread

Local memory

- section of device memory used when variables of a thread do not fit the registers available
- lifetime: thread

Shared memory

- fast on chip memory shared between all threads of a single block
- lifetime: block
- Texture memory
 - a cached region of global memory
 - each SM has its own texture memory cache on chip
 - lifetime: application
- Constant memory
 - a cached read-only region of deice memory on each SM
 - lifetime: application

Performance

- GPU bundles several threads together for execution into "warps"
- Thread index values within a warp are contiguous. For warp size of 32 (eg GTX480) we have threadIdx.x $0 \rightarrow 31$ in warp 0 **threadIdx.x** $32 \rightarrow 63$ in warp 1

Bit more complicated for multidimensional thread organization

Branching

- Single Instruction Multiple Thread
 executes instruction for all threads in the warp, before
 - executes instruction for all threads in the warp, before moving onto next instruction
- Divergence occurs when threads in a warp follow different control flows. Sequential passes are then needed which can affect performance
- Also be careful of conditionals based on thread ID

Memory Access

- DRAM memory access patterns
 - Fast: accessing data from multiple and contiguous locations
 - Slow: truly random access
- Ideal access pattern in GPUs
 - all threads in a warp access consecutive global memory locations
- Coalescing memory access
 - hardware can combine all of these accesses into a single request
- Non-coalescing memory access affects performance

Outline

- 1 Need for parallelism
- 2 Graphical Processor Units
- 3 Gravitational Microlensing Modelling

Work done by PhD student Joe Ling, Massey University (thesis due soon!)

■ Unroll small loops

- Reducing a few instructions per loop can add up to significant saving when performing the computation billions of time.
- There is 8%-9% improvement in performance by just unrolling the lens equation in ray shooting.

■ Magnification Map generation

- Coalescing memory read/write has significant impact on performance.
- When writing to random memory position, atomic instruction is needed. For example, binning rays in rays shooting.
- Make sure there are enough blocks to hide the memory latency.
- Use as less registers per threads as possible in order to fit more blocks into a MP.
- Number of threads per block should be multiple of warp size.
- Use constant memory (pass as argument) instead of loading input parameters from global memory.

Magnification Map reading

- Texture memory should be used instead of global memory as memory reading is usually not coalescing
- Take advantage of locality as texture memory is cached

■ Dynamic light curve calculation

- -Ray shooting sum can be done very quickly on the GPU but solving the image positions is usually faster by using the CPU.
- Minimize divergent warps.
- Our programming model: Multi-thread images solving code by CPU & ray shooting sum code by GPU.

Other Stuff

- Fermi has now implemented the IEEE 754-2008 floating-point standard.
- Fermi's double precision arithmetic is 8 times slower then single precision on consumer hardware (1/2 in commercial hardware).
- But better precision can be achieved by shifting even with single precision arithmetic.
- Only commercial hardware has ECC check, it is disabled on consumer hardware.

Further Reading

- Parallel Programming, B. Wilkinson & M. Allen - a classic text on parallel programming. Deals mainly with cluster computing and message passing programming, but concepts in parallelizing numerical algorithms are still relevant to GPU programmers
- Programming Massively Parallel Processors, D.B. Kirk & W W Hwii
 - the definitive guide to CUDA and programming GPUs
- RTFM!