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• Wilsonian (non perturbative)

• Applications to Hamiltonian systems:

• RFT for Regge limit of QCD
• Quantum mechanics



Introduction
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Physical systems, very different at microscopic level, can show 
phases characterized by the same Universal behavior when the  
correlation length diverges (2nd order phase transition).

Most famous example:  

3D Ising universality class (Magnetic 
systems, Water) in a Landau-Ginzburg 
description as a scalar QFT,  

Example: Ising model

S = �J Â
hiji

si sj + B Â
i

si

si = ±1

5/42

Critical phenomena are conveniently described by  
Quantum and Statistical Field Theories.

RG is the proper tool to investigate related questions 
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Critical theories
 

Theory space

The critical theories are 
points in a suitable theory space 
characterized by scale invariance.  
If there is Poincare’ invariance it is 
often lifted to conformal invariance

(fields and symmetries)
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• Fundamental physics in a QFT description require renormalizability conditions 
    which in the most general case goes under the name of Asymptotic Safety: 
    existence of a fixed point with a finite number of UV attractive directions. 
    Asymptotic freedom is a particular case with a gaussian fixed point.

In a Renormalization Group description critical field theories are associated  
to fixed points of the flow, where scale invariance is realized.  

• These fixed points may control the IR behavior of the theories.  
    (example: Wilson-Fisher fixed point)

RG

• Perturbation theory in presence of small parameters,  
    e.g. ε-expansion below the critical dimension 

• Wilsonian non perturbative, exact equations but not solvable in 
practice. (Polchinski and Wetterich/Morris equations)

Common formulations:

Wilson (1971), Wilson and Fisher (1972)

Weinberg (1979)
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The main constraints are given by the field content and the symmetries,  
but this leaves still too many possible theories for a generic dimension d.

It is therefore useful to start from some kind of Landau-Ginzburg description  
to single out some possible solutions.

• This is the starting point for an RG analysis.

Action description

S =

Z
ddx

X

i

giOi(�)

Couplings are coordinates in theory space, spanned by a basis of operators

• The points corresponding to critical theories may be CFT fixed by the
Conformal data: the scaling dimensions of the primary operators and 
the structure constants defining their 3 point correlators. No lagrangian 
formulation is required.
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• For example in the perturbative ε-expansion approximation using 
    the universal beta function coefficients, e.g. in a massless        scheme

How to get in an RG framework informations on the critical theory?  
If conformal, the so called conformal data?

Universal data and RG

scaling operators of the theory at criticality, Oa =
P

i(S
�1)ia�i, so that we can rewrite

the action as fixed point action (i.e. CFT action) plus deformations

S = S⇤ +
X

a

µ
✓a�

a
Z

ddxOa(x) +O(�2) . (2.8)

Deformations are relevant, marginal or irrelevant depending on the value of the related

critical exponent (respectively positive, zero or negative). In the diagonal basis also the

tensor N i
jk have a direct physical meaning, since after the diagonalizing transformation it

becomes a quantitiy related to the (symmetrized) OPE coe�cients3

C̃
a
bc =

X

i,j,k

S
a
iN

i
jk (S

�1)jb (S
�1)kc , (2.9)

It will become clear in the practical examples that will follow this subsection that at

d = dc the C̃
a
bc are the OPE coe�cients of the underlying Gaussian CFT and that all

O(✏) corrections agree with CFT results for all available comparisons, despite the general

inhomogeneous transformations of these coe�cients under general scheme changes as dis-

cussed in subsection 2.3. For these reasons we will call the quantities in (2.9) MS OPE

coe�cients because we will be computing them using MS methods.

The beta functions can now be written as

�
a = �(d��a)�

a +
X

b,c

C̃
a
bc �

b
�
c +O(�3) . (2.10)

This formula is the familiar expression for beta functions in CFT perturbation theory (see

for example [2]) and provides a link between RG and CFT. Generalizations of this result

beyond the leading order are considerably less simple than what we presented here [7].

In CFT one uses the OPE4

hOa(x)Ob(y) · · · i =
X

c

1

|x� y|
�a+�b��c

C
c
ab hOc(x) · · · i (2.11)

to renormalize a perturbative expansion of the form (2.8) in which the CFT is described

by the action S⇤ and deformations are parametrized by the couplings �
a.5 In the RG

framework, conversely, the knowledge of the beta functions could permit (in principle) the

extraction of the conformal data directly from (2.10). The rest of this paper is essen-

tially devoted to a detailed exploration of this link, first within a simple example in the

next subsection and then, after a short discussion about scheme dependences of the OPE

coe�cients, within a functional generalization of standard perturbation theory ✏-expansion.

3Note that the overall normalization of the OPE coe�cients is not fixed: a rescaling of the couplings

�a ! ↵a�
a implies C̃a

bc ! ↵b↵c
↵a

C̃a
bc.

4These OPE coe�cients are related to those entering the beta functions by a factor Sd/2 (see [2]).
5The careful reader must have noticed that our determination of the Ca

bc is symmetrized in the lower

two indices, but it is more than enough to reconstruct the fully symmetric structure constants Cabc.
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Critical quantities are encoded in the expansion coefficients describing the flow 
around the scale invariant point:

is scale invariant

bi(g⇤) = 0 . (2.2)

In the neighborhood of a fixed point it is convenient to characterize the flow by Taylor
expanding the beta functions. If dg

i parametrizes the deviation from the fixed point
(gi = g

i
⇤ + dg

i), we have

bk(g⇤ + dg) = Â
i

M
k

i dg
i + Â

i,j
N

k
ij dg

i dg
j + O(dg

3) , (2.3)

where at the linear level we defined the stability matrix

M
i
j ⌘

∂bi

∂gj

����
⇤

(2.4)

and at the quadratic level we defined the tensor

N
i
jk ⌘

1
2

∂2bi

∂gj∂gk

����
⇤

, (2.5)

which is symmetric in the last two (lower) indices.
Each scale invariant point of the RG flow is in one to one correspondence with a uni-

versality class and, under mild conditions that we assume, a related CFT. The spectrum
of the theory at criticality is given by the eigendeformations of M

i
j with the correspond-

ing eigenvalues being (the negative of) the critical exponents qa. We will only be con-
cerned with cases in which either the matrix M

i
j is already diagonal, or its left and right

spectra coincide (meaning that the spectrum is unique and unambiguous). It is conve-
nient to introduce the rotated basis la = Âi S

a
i dg

i which diagonalizes M
i
j (through the

linear transformation S a
i ⌘ ∂la/∂dg

i
��
⇤
)

Â
i,j

S
a

i M
i
j (S

�1)j
b = �qada

b . (2.6)

Critical exponents allow for a precise definition of the scaling dimensions of the oper-
ators through the relation qi = d � Di. Let us introduce the “canonical” dimensions
Di of the couplings, and parametrize the deviations of the critical exponents from the
canonical scaling through the anomalous dimensions g̃i as

qi = d � Di � g̃i . (2.7)

Here and in the following we adopt a tilde to distinguish RG quantities from CFT ones.
The notion of canonical dimension is in principle arbitrary, but in real-world applica-
tions it is generally borrowed from the scaling of the Gaussian critical theory.

This expression is, strictly speaking, valid only for primary operators; for descen-
dants there is a subtlety that we will discuss later. The matrix (S�1)i

a also returns the
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Moving to a diagonal basis in the linear sector
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one can extract not only the scaling dimensions, but also, reversing an argument 
from Cardy for a CFT, some OPE coefficients (structure constants) at order O(ε)  

Universal data and RG

scaling operators of the theory at criticality, Oa =
P

i(S
�1)ia�i, so that we can rewrite

the action as fixed point action (i.e. CFT action) plus deformations

S = S⇤ +
X

a

µ
✓a�

a
Z

ddxOa(x) +O(�2) . (2.8)

Deformations are relevant, marginal or irrelevant depending on the value of the related

critical exponent (respectively positive, zero or negative). In the diagonal basis also the

tensor N i
jk have a direct physical meaning, since after the diagonalizing transformation it

becomes a quantitiy related to the (symmetrized) OPE coe�cients3

C̃
a
bc =

X

i,j,k

S
a
iN

i
jk (S

�1)jb (S
�1)kc , (2.9)

It will become clear in the practical examples that will follow this subsection that at

d = dc the C̃
a
bc are the OPE coe�cients of the underlying Gaussian CFT and that all

O(✏) corrections agree with CFT results for all available comparisons, despite the general

inhomogeneous transformations of these coe�cients under general scheme changes as dis-

cussed in subsection 2.3. For these reasons we will call the quantities in (2.9) MS OPE

coe�cients because we will be computing them using MS methods.

The beta functions can now be written as

�
a = �(d��a)�

a +
X

b,c

C̃
a
bc �

b
�
c +O(�3) . (2.10)

This formula is the familiar expression for beta functions in CFT perturbation theory (see

for example [2]) and provides a link between RG and CFT. Generalizations of this result

beyond the leading order are considerably less simple than what we presented here [7].

In CFT one uses the OPE4

hOa(x)Ob(y) · · · i =
X

c

1

|x� y|
�a+�b��c

C
c
ab hOc(x) · · · i (2.11)

to renormalize a perturbative expansion of the form (2.8) in which the CFT is described

by the action S⇤ and deformations are parametrized by the couplings �
a.5 In the RG

framework, conversely, the knowledge of the beta functions could permit (in principle) the

extraction of the conformal data directly from (2.10). The rest of this paper is essen-

tially devoted to a detailed exploration of this link, first within a simple example in the

next subsection and then, after a short discussion about scheme dependences of the OPE

coe�cients, within a functional generalization of standard perturbation theory ✏-expansion.

3Note that the overall normalization of the OPE coe�cients is not fixed: a rescaling of the couplings

�a ! ↵a�
a implies C̃a

bc ! ↵b↵c
↵a

C̃a
bc.

4These OPE coe�cients are related to those entering the beta functions by a factor Sd/2 (see [2]).
5The careful reader must have noticed that our determination of the Ca

bc is symmetrized in the lower

two indices, but it is more than enough to reconstruct the fully symmetric structure constants Cabc.
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It will become clear in the practical examples that will follow this subsection that at
d = dc the C̃

a
bc are the OPE coefficients of the underlying GaussianCFT and that all O(e)

corrections agree with CFT results for all available comparisons, despite the general
inhomogeneous transformations of these coefficients under general scheme changes as
discussed in subsection 2.3. For these reasons we make the educated guess that the
quantities in (2.9) are the MS OPE coefficients since they have been computed using MS
methods.

The beta functions can now be written as

ba = �(d � Da)l
a + Â

b,c
C̃

a
bc lblc + O(l3) . (2.10)

This formula is the familiar expression for beta functions in CFT perturbation theory
(see for example [2]) and provides a link between RG and CFT. Generalizations of this
result beyond the leading order are considerably less simple than what we presented
here [7].

In CFT one uses the OPE4

hOa(x)Ob(y) · · · i = Â
c

1
|x � y|

Da+Db�Dc

C
c

ab hOc(x) · · · i (2.11)

to renormalize a perturbative expansion of the form (2.8) in which the CFT is described
by the action S⇤ and deformations are parametrized by the couplings la.5 In the RG
framework, conversely, the knowledge of the beta functions could permit (in principle)
the extraction of the conformal data directly from (2.10). The rest of this paper is es-
sentially devoted to a detailed exploration of this link, first within a simple example
in the next subsection and then, after a short discussion about scheme dependences of
the OPE coefficients, within a functional generalization of standard perturbation theory
e-expansion.

3 Note that the overall normalization of the OPE coefficients is not fixed: a rescaling of the couplings
la ! aala implies C̃

a
bc !

abac

aa
C̃

a
bc.

4 These OPE coefficients are related to those entering the beta functions by a factor Sd/2 (see [2]).
5 The careful reader must have noticed that our determination of the C

a
bc is symmetrized in the lower

two indices, but it is more than enough to reconstruct the fully symmetric structure constants Cabc.

6

✓a = d��a

Take home message

Linear term coefficients transform homogeneously
Quadratic term coefficients transform inhomogeneously Possible scheme  

dependence!
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Perturbative interlude: Ising  Universality Class

Two fixed points:

ε-expansion below d=4 for the LG critical model L =
1

2
(@�)2 + g�4

12g�212g�2

Leading counterterms in perturbation theory at order      , dim reg  g2

UV gaussian        IR Wilson-Fisher

Anomalous dimension: ⌘ = 2�̃1 = 96g2

Rescaling the coupling: g ! (4⇡)2g

g⇤ =
✏

72
g⇤ = 0

⌘ =
✏

54

is a universal quantity, independent from any coupling reparameterization!⌘

Lc.t. =
1

✏

1

2(4⇡)2
(12g)2�4 � 1

✏

1

6(4⇡)4
(4!g)2(@�)2

beta function: 

scaling operators of the theory at criticality, Oa =
P

i(S
�1)ia�i, so that we can rewrite

the action as fixed point action (i.e. CFT action) plus deformations

S = S⇤ +
X

a

µ
✓a�

a
Z

ddxOa(x) +O(�2) . (2.8)

Deformations are relevant, marginal or irrelevant depending on the value of the related

critical exponent (respectively positive, zero or negative). In the diagonal basis also the

tensor N i
jk have a direct physical meaning, since after the diagonalizing transformation it

becomes a quantitiy related to the (symmetrized) OPE coe�cients3

C̃
a
bc =

X

i,j,k

S
a
iN

i
jk (S

�1)jb (S
�1)kc , (2.9)

It will become clear in the practical examples that will follow this subsection that at

d = dc the C̃
a
bc are the OPE coe�cients of the underlying Gaussian CFT and that all

O(✏) corrections agree with CFT results for all available comparisons, despite the general

inhomogeneous transformations of these coe�cients under general scheme changes as dis-

cussed in subsection 2.3. For these reasons we will call the quantities in (2.9) MS OPE

coe�cients because we will be computing them using MS methods.

The beta functions can now be written as

�
a = �(d��a)�

a +
X

b,c

C̃
a
bc �

b
�
c +O(�3) . (2.10)

This formula is the familiar expression for beta functions in CFT perturbation theory (see

for example [2]) and provides a link between RG and CFT. Generalizations of this result

beyond the leading order are considerably less simple than what we presented here [7].

In CFT one uses the OPE4

hOa(x)Ob(y) · · · i =
X

c

1

|x� y|
�a+�b��c

C
c
ab hOc(x) · · · i (2.11)

to renormalize a perturbative expansion of the form (2.8) in which the CFT is described

by the action S⇤ and deformations are parametrized by the couplings �
a.5 In the RG

framework, conversely, the knowledge of the beta functions could permit (in principle) the

extraction of the conformal data directly from (2.10). The rest of this paper is essen-

tially devoted to a detailed exploration of this link, first within a simple example in the

next subsection and then, after a short discussion about scheme dependences of the OPE

coe�cients, within a functional generalization of standard perturbation theory ✏-expansion.

3Note that the overall normalization of the OPE coe�cients is not fixed: a rescaling of the couplings

�a ! ↵a�
a implies C̃a

bc ! ↵b↵c
↵a

C̃a
bc.

4These OPE coe�cients are related to those entering the beta functions by a factor Sd/2 (see [2]).
5The careful reader must have noticed that our determination of the Ca

bc is symmetrized in the lower

two indices, but it is more than enough to reconstruct the fully symmetric structure constants Cabc.

– 6 –

�g = �✏g + 72g2

d = 4�✏

4! g� 4! g�



 10

Functional perturbative RG example: Ising  UC
How to study deformations around the Wilson-Fisher fixed point? d = 4� ✏

Dimensionful beta functions  
(global rescaling as before)
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Couplings:
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1 loop        2 loop
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FPRG for multicritical models

RG, even
RG, odd

Codello, Safari, G.P.V., Zanusso     EPJ C78 (2018) 1

Codello, Safari, G.P.V., Zanusso     Phys. Rev. D98 (2017) 081701

O’Dwyer,  Osborn Ann. Phys. 323 (2008) 1859

Study of deformations: we limit to a truncation
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Rescaling functions and fields to  
dimensionless quantities v('), z(')

it is possible to go beyond the relevant components if one is content with the order e
estimates.

Neglecting derivative interactions, the beta functional of the dimensionless potential,
in the form of Eq. (3.3), at the NLO (cubic order) in the dimensionless potential is

bv = � d v(j) +
d � 2 + h
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j v
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where the integers r, s, t are implicitly taken to be positive, and the quantities K
n
rst

and
L

n
st

are defined as follows
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where y(x) = G0(x)/G(x) is the digamma function. The last term in the first line of (5.4)
is the LO (n � 1)-loop term, while the NLO second and third lines appear at 2(n � 1)-
loops. The origin of such terms and the corresponding diagrams will be briefly dis-
cussed in appendix A. Notice also that, differently from sections 2 and 3, we did not yet
include any further rescaling when moving from the dimensionful V(f) to the dimen-
sionless v(j) potential: since the rescaling does not affect the spectrum, we postpone
the discussion of the “appropriate” rescaling to subsection 5.3 in which some MS OPE
coefficients are computed.

Neglecting derivative interactions (in agreement with our definition of LPA), the in-
duced flow of the function z(j) at quadratic order is given by

bz = h z(j) +
d � 2 + h

2
j z
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4
v
(2n)(j)2. (5.6)

The last term in this equation comes from a diagram with 2(n � 1)-loops, which gives
a counter-term consisting of the second contribution in Eq. (A.2), as explained in ap-
pendix A.

From (5.4), noticing the fact that only the dimensionless coupling can take a non-zero
value at the fixed point, one can set v(j) = g j2n together with the condition bv = 0 to
find the critical coupling g at quadratic order in e. This is given by
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FIG. 2: Diagrams contributing to the counter-term of the Z function at quadratic level
in the couplings

diagrammatically as in Fig. (1) and involves V contributions only. The corresponding
expression for this diagram is

Â
r�2

1
2 r!

Z
dd

x dd
y V

(r)(fx) G
r
x�y V

(r)(fy) . (A.1)

It turns out that for r = n this “melon” type diagram has a pole that contributes to the
potential. On the other hand, for r = 2n � 1 there is a pole term with two derivatives
that contributes to the function Z. The corresponding counter-terms in the MS scheme
can be straightforwardly computed using (A.1) and are given by

Sc.t.(f) =
1
e

Z
dd

x

⇢
c

n�1

4 n!
V

(n)(f)2
�

(n � 1)c2n�2

16 (2n)!
V

(2n)(f)2(∂f)2
�

. (A.2)

The first counter-term is therefore of (n � 1)-loop order, while the second term is at
2(n� 1) loops. The other diagram that contributes at quadratic level is shown in Fig. (2).
This involves both the V and Z functions and contributes to the flow of Z for r = n,
which will therefore be of (n � 1)-loop order. Notice that there are three different di-
agrams of this kind depending on whether one, two or none of the fields in (∂f)2 are
involved in the propagators, as shown in Fig. (2).

At cubic order in the couplings, restricting to the contribution from V only, i.e. LPA,
there are three types of counter-term diagrams for the potential. The first one can be seen
as a one loop graph with three vertices whose propagators are replaced with a bunch
of r, s and t propagators as shown in Fig. (3a). In order to have a pole contributing to
the potential the number of propagators must be constrained to r + s + t = 2n. The
second one consists of two melon diagrams as in Fig. (3b), and the third graph, shown
in Fig. (3c), is a melon diagram involving the potential and its counter-term at quadratic
level Vc.t.(f) which is the first term on the right-hand side of (A.2). In both diagrams the
e singularity that contributes to the potential occurs when the number of propagators in
each melon is equal to n. These three diagrams are therefore all of 2(n � 1)-loop order.
They give rise to the cubic terms in the second and third lines of (5.4).

Appendix B: A general scaling relation

In this appendix we would like to obtain a relation valid among the scaling of two
couplings induced by the RG flow. This information can then be compared to the rela-
tion obtained in CFT for the scaling of the field operator and one of its descendants.
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Landau-Ginzburg lagrangian
necessitate further clarifications for their application to CFT, therefore there will be some

slight overlapping with the previous Section. Let us begin by introducing the action of the

scalar �m-theory

S[�] =

Z
d
d
x

n1

2
(@�)2 + µ

(m
2 �1)✏ g

m!
�
m
o
, (2.1)

in d dimensions, for d su�ciently close to the upper critical dimension as in Eqs. (1.2)

and (1.3). The careful reader should have noticed several important details in comparing

(2.1) with (1.1). In (2.1) we introduced a reference (mass) scale µ which makes the almost

marginal coupling g dimensionless for any d. The presence of the mass scale µ underlies

the fact that the action (2.1) is not conformal invariant for all values of g, which in fact

must be tuned to its critical value as will be done later in the paper. Nevertheless, we

could exclude all the strictly dimensionful couplings gk that appeared in (1.1) from (2.1).

The reason is that, since we are interested in the underlying conformal theory, which by

definition does not depend on external scales, all couplings with positive mass dimension

must vanish at criticality. This multi-critical tuning corresponds to the point in which, for

example, all the n di↵erent phases of a �
2n theory coexist.

Before diving more deeply into some technical details, it is worth noting that, with the

exception of the cases m = 3, 4 and 6, the upper critical dimension dm is a rational number.

More generally, after the displacement by ✏ all the theories will live in the arbitrarily

real dimension d = dm � ✏. Theories living in continuous dimensions have already been

investigated as CFT with conformal bootstrap methods [19]: They are now believed to

violate unitarity through the appearance of complex conjugate pairs of scaling dimensions,

which are probably related to “evanescent” operators that couple to the spectrum only at

non-integer dimensionalities and are associated to states with negative norm [20]. While

this is a very interesting line of research which deserves further investigation, we shall not

deal with these aspects and assume that conformal symmetry, unitary or not unitary, is

realized for any value of the dimension d.3

The key idea of [1] is that all the CFT data of (2.1) must interpolate with that of

the Gaussian theory in the limit ✏ ! 0. We set some notation by defining the scaling

dimensions for the field � and the composite operators �m of an interacting scalar theory

in d dimensions. Let the canonical dimension of � be

� =
d

2
� 1 = �m �

✏

2
, with �m =

2

m� 2
, (2.2)

and the scaling dimensions of � and �
k be respectively

�1 ⌘ �� = � + �1 and �k ⌘ ��k = k � + �k . (2.3)

The �-terms represent the corrections from the canonical scaling dimensions � and k �,

and therefore must be proportional to some power of g or ✏ to ensure consistency of the

Gaussian limit.
3
Scale invariance seems to imply conformal invariance for several physically interesting critical models,

especially in even dimensional cases. There is also a pragmatic evidence, due to the results from conformal

bootstrap program, that this is true for the d = 3 Ising universality class. This evidence has been recently

supported at theoretical level [21].
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relations among them [3]. The two key ideas behind this approach are to achieve consistency

between conformal symmetry and the equations of motion through the use of the operatorial

Schwinger-Dyson equations (SDE), and to ensure regularity with the Gaussian theory when

the dimension approaches its upper critical value in a limiting procedure. Such a method

has been able to reproduce the leading results for the ✏-expansion of the Ising, Lee-Yang,

and Tricritical Ising universality classes. These results are very amusing in that none

of the standard methods of quantum field theory (QFT) are used, including perturbation

theory and the renormalization group, but just the knowledge of free (Gaussian) theory

results for the correlators given by the Wick contractions. These achievements thus point

at the idea that CFT might work as a fully consistent replacement of the standard methods

when critical properties are under investigation.

We will be interested in generalizing this idea to theories governed by the general �m

potential. In a Ginzburg-Landau description their action is

S[�] =

Z
ddx

n1

2
@µ�@

µ
�+

g

m!
�
m +

m�1X

k=0

gk

k!
�
k
o
, (1.1)

for m a natural number bigger than two. These models can be divided into two classes:

On the one hand if m = 2n, i.e. even, they are the so-called multi-critical models which are

protected by a Z2 parity (� ! ��) and include both the Ising (m = 4) and Tricritical

(m = 6) universality classes as the first special cases.1 In the Landau-Ginzburg approach

the �2n e↵ective potential describes a statistical system with a phase-transition that can be

reached by opportunely tuning the coupling g to a positive value, and in which n distinct

minima of the potential become degenerate [4]. On the other hand if m = 2n+ 1, that is

odd, (1.1) represents a sequence of multi-critical non-unitary theories which are protected

by a generalization of parity and include the Lee-Yang universality class (m = 3) as first

example. The non-unitary nature manifests itself in that the critical value of the coupling

g must be a purely imaginary number for the odd potentials. We will see in more detail at

the beginning of the next Section why, within a CFT approach, all the subleading couplings

gk of (1.1) do not play a significant role in tuning the action to criticality, therefore for the

moment we shall simply ignore them.

The upper critical dimension of (1.1) is defined as the dimension d at which the coupling

g is canonically dimensionless

dm =
2m

m� 2
. (1.2)

A simple application of the Ginzburg criterion confirms that above the upper critical di-

mension the statistical fluctuations are weak and the physics of (1.1) is Gaussian and

controlled by mean-field critical exponents, while below the upper critical dimension the

fluctuations are strong enough to change the scaling properties and to provide the field

1
We follow the convention that universality classes such as Ising’s are denoted with typeset font,

therefore the spin ±1 Ising model at criticality is only one specific realization of the Ising universality class

and the two should not generally be confused. The paper will deal with universality classes to a greater

extent.
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Upper critical dimension

d = dm�✏

One marginal interaction at      .dm
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FPRG for multicritical models
General pattern of mixing of the operators present in the truncation

as9

b
(k)
a (w⇤ + dw) = Â

i
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(k)
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dw
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���
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dw
(i)
b

+
1
2 Â

ij

d2b
(k)
a

dw
(i)
b

dw
(j)
c

���
⇤

dw
(i)
b

dw
(j)
c + · · · (4.5)

Although one can study the RG flow and compute all universal quantities directly at
the functional level by exploring the consequences of (4.5), in the next section we will
reconnect with the discussion in terms of couplings as outlined in section 2, and use the
beta functionals b

(k)
a as a convenient way to generate the coupling beta functions.

The couplings in (4.1) can be defined by expanding the functions such as V(f), Z(f),
Wa(f) and those of the higher derivative operators, in powers of the field, starting with
f0 = 1. Using dimensional analysis and recallling that close to the upper critical di-
mension the spectrum of the theory is almost Gaussian, we can infer that the couplings
in V(f) corresponding to the 2n lowest dimensional operators 1, f, · · · , f2n�1 do not
mix with any other coupling. Staring from f2n and all the way up to f4n�3 they mix
with the O(∂2) couplings of (∂f)2, · · · , f2n�3(∂f)2. From f4n�2, f2n�2(∂f)2 the O(∂4)
couplings of Wa(f) will also be involved. This can be summarized in the following table

V : 1 f · · · f2n�1 f2n · · · f4n�3 f4n�2 · · ·

Z : (∂f)2 · · · f2n�3(∂f)2 f2n�2(∂f)2 · · ·

W1 : f⇤2f · · ·

W2 : (∂µ∂nf)2 · · ·

W3 : (⇤f)2 · · ·

(4.6)

where each row collects the operators included in the function shown on the left-hand
side and only couplings of operators in the same column mix together. If we arrange
the couplings of (4.1) in increasing order of their canonical operator dimension, and
furthermore, we sort them for increasing order of derivatives of their corresponding
operators, the stability matrix takes the block diagonal form

0

BBB@

M
(0)

M
(2)

M
(4)

. . .

1

CCCA
(4.7)

where in general M
(2k) is itself a block diagonal matrix whose blocks have fixed dimen-

sion. Each diagonal block contained in M
(2k) describes the mixing between couplings

of operators up to 2k derivatives, all of which belong to the same column in (4.6). In
particular M

(0) is a diagonal matrix whose entries give the scaling dimensions of the
9 More generally, for an arbitrary Lagrangian L, the RG flow can be formally described by a beta func-

tional b[L], and a fixed point L⇤ of the theory would be defined by the condition b[L⇤] = 0. The fixed
point Lagrangian L⇤ is normally expected to describe a CFT, whenever scale invariance implies confor-
mal invariance. Several non trivial informations on the critical theory can then be extracted by probing
arbitrary off-critical deformations from the fixed point parametrized by L = L⇤ + dL

b[L⇤ + dL] =
db

dL

����
L⇤

dL+
1
2

d2b

dLdL

����
L⇤

dLdL+ · · · (4.4)
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At leading order the  
stability matrix M  
is triangular. 

From these, one can then read off the anomalous parts g̃i and w̃i of the v and z cou-
pling scaling dimensions at order e which are valid not only for 0  i  2n� 3 described
by the above matrix but for all i, according to the discussion in the previous subsection.
In summary, again interpreting the factorials to be infinite for negative integer argu-
ments, and for i � 0

g̃i =
2(n � 1)n!

(2n)!
i!

(i � n)!
e w̃i =

2(n � 1)n!
(2n)!

(i + 1)!
(i � n + 1)!

e . (5.16)

This reproduces the result of [27]. The g̃i in Eq. (5.16) also match the anomalous dimen-
sions found in [8, 9] from CFT constraints.

Beyond the leading order for the anomalous dimensions, the stability matrix will not
be lower-triangular anymore, and in order to find the anomalous dimensions of higher
and higher powers of f one has to take into account (up to cubic order contributions
of) operators of higher and higher dimensions. In the simplest case, 2n < i < 4n � 3,
one needs to include cubic corrections to bz, and furthermore, take into account the
z(j) contribution to bv at cubic level. The only term contributing to this last piece is
proportional to v

(n)(f)2
z(f) and leads to O(e2) corrections in the upper right element

in (5.15). These higher order corrections are not considered here and are left for future
work.

Besides (5.16), an extra information which has been obtained in [8] using conformal
symmetry and the Schwinger-Dyson equations is the leading order value of g2 for n >
2, which is of order e2. For n > 2, putting i = 2 in (5.13) gives

g̃2 = h �
2(n � 1)n!6

(2n)!2
G(dn)

K
n

2n�2,1,1
(2n � 2)!

e2 =
8(n + 1)(n � 1)3

n!6

(n � 2)(2n)!3
e2 , (5.17)

which is also in agreement with the result found in [8].

5.3. OPE coefficients

The only non-zero C̃
k

ij coefficients that are extracted from the beta functions are those
that are massless, or equivalently, satisfy the universality condition i + j � k = 2n. Con-
trary to the anomalous dimensions, the OPE coefficients do depend on the normaliza-
tion of the couplings. Throughout this section we continue to use the normalization
where couplings appear without factorials in the v(j), z(j) expansions, as defined in
(5.12). On top of this, it turns out convenient to make a global rescaling of the couplings
by redefining the potential according to11

v !
4

(n � 1)cn�1 v . (5.18)

This removes the parameter c from the beta functions (5.4) and (5.6). In such a nor-
malization, using the beta function (5.4), the expansion of the potential and its beta

11 In Sections 3.1 and 3.2 this rescaling was used for both the Ising and the Lee-Yang universality classes
with n = 1 and n = 3

2 respectively.
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b
(k)
a (w⇤ + dw) = Â

i

db
(k)
a

dw
(i)
b

���
⇤

dw
(i)
b

+
1
2 Â

ij

d2b
(k)
a

dw
(i)
b

dw
(j)
c

���
⇤

dw
(i)
b

dw
(j)
c + · · · (4.5)

Although one can study the RG flow and compute all universal quantities directly at
the functional level by exploring the consequences of (4.5), in the next section we will
reconnect with the discussion in terms of couplings as outlined in section 2, and use the
beta functionals b

(k)
a as a convenient way to generate the coupling beta functions.

The couplings in (4.1) can be defined by expanding the functions such as V(f), Z(f),
Wa(f) and those of the higher derivative operators, in powers of the field, starting with
f0 = 1. Using dimensional analysis and recallling that close to the upper critical di-
mension the spectrum of the theory is almost Gaussian, we can infer that the couplings
in V(f) corresponding to the 2n lowest dimensional operators 1, f, · · · , f2n�1 do not
mix with any other coupling. Staring from f2n and all the way up to f4n�3 they mix
with the O(∂2) couplings of (∂f)2, · · · , f2n�3(∂f)2. From f4n�2, f2n�2(∂f)2 the O(∂4)
couplings of Wa(f) will also be involved. This can be summarized in the following table

V : 1 f · · · f2n�1 f2n · · · f4n�3 f4n�2 · · ·

Z : (∂f)2 · · · f2n�3(∂f)2 f2n�2(∂f)2 · · ·

W1 : f⇤2f · · ·

W2 : (∂µ∂nf)2 · · ·

W3 : (⇤f)2 · · ·

(4.6)

where each row collects the operators included in the function shown on the left-hand
side and only couplings of operators in the same column mix together. If we arrange
the couplings of (4.1) in increasing order of their canonical operator dimension, and
furthermore, we sort them for increasing order of derivatives of their corresponding
operators, the stability matrix takes the block diagonal form

0

BBB@

M
(0)

M
(2)

M
(4)

. . .

1

CCCA
(4.7)

where in general M
(2k) is itself a block diagonal matrix whose blocks have fixed dimen-

sion. Each diagonal block contained in M
(2k) describes the mixing between couplings

of operators up to 2k derivatives, all of which belong to the same column in (4.6). In
particular M

(0) is a diagonal matrix whose entries give the scaling dimensions of the
9 More generally, for an arbitrary Lagrangian L, the RG flow can be formally described by a beta func-

tional b[L], and a fixed point L⇤ of the theory would be defined by the condition b[L⇤] = 0. The fixed
point Lagrangian L⇤ is normally expected to describe a CFT, whenever scale invariance implies confor-
mal invariance. Several non trivial informations on the critical theory can then be extracted by probing
arbitrary off-critical deformations from the fixed point parametrized by L = L⇤ + dL

b[L⇤ + dL] =
db

dL

����
L⇤

dL+
1
2

d2b

dLdL

����
L⇤

dLdL+ · · · (4.4)
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the matrix ∂bi
v/∂gj evaluated at the fixed point, which is for dimensional reasons diag-

onal, has the elements �qi = �d + i(d � 2)/2 + g̃i on its diagonal, with the following
anomalous parts10

g̃i = i
h

2
+

(n � 1)i!
(i � n)!

2 n!
(2n)!


e �

n

n � 1
h

�
+ 2n h d2n

i

+
(n � 1)i!n!6

(2n)!2
G(dn) Â

r+s+t=2n

r, s, t 6= n

K
n
rst

(r!s!t!)2


2n!

3(i � n)!
�

r!
(i � 2n + r)!

�
e2

+
(n � 1)2

i!n!5

(2n)!2 Â
s+t=n

n � 1 + L
n
st

(s!t!)2


1

(i � n)!
�

2s!
n!(i � 2n + s)!

�
e2. (5.13)

For the relevant components, that is for the range 0  i  2n � 1, these are simply the
anomalous dimensions with accuracy O(e2). The last term in the first line, which comes
from the term proportional to h in (5.4), does not contribute in the relevant sector. How-
ever, if one wishes to find the anomalous dimension of the marginal coupling, one has
to take this term into account. Within the same O(e2) accuracy, for the irrelevant cou-
plings, which we do not consider here, additional mixing transformations are required
to diagonalize the stability matrix.

From (5.13) one can readily see that for i = 1 all the terms except the first vanish.
Also, interestingly, for i = 2n � 1 which corresponds to the descendant operator f2n�1

in the interacting theory because of the Schwinger-Dyson equations, the O(e2) terms in
the second and third line of Eq. (5.13) vanish so that these anomalous dimensions take
the simple form

g̃1 =
h

2
, g̃2n�1 = (n � 1)e �

h

2
. (5.14)

The two anomalous dimensions then sum up to g̃1 + g̃2n�1 = (n � 1)e, which is equiv-
alent to the scaling relation q1 + q2n�1 = d and proved in general in appendix B.

The correction (5.9) allows us to go beyond the local potential approximation and
compute at order e the block M

(2) in (4.7) which is a block-diagonal matrix with two by
two blocks. The i-th block which gives the mixing of the fi+2n and fi(∂f)2 couplings is
given in the {fi+2n, fi(∂f)2} basis as

i

n � 1
1 +

0

B@
�

(i+2n)
2 + 2(n�1)n!

(2n)!
(i+2n)!
(i+n)! 0

�
2(n�1)2

n!3
(2n)!2

(i+2n)!
i! c

n�1(1 � di

0) �
i

2 +
2(n�1)n!
(2n)!

(i+1)!
(i�n+1)!

1

CA e + O(e2) , (5.15)

where 1 is the two dimensional identity matrix. For each i the two eigenoperators have
the same canonical scaling at the critical dimension. The eigenvalues of the stability
matrix include the scaling dimensions �qi+2n, given in Eq. (2.14), and ( d

2 � 1)i + w̃i,
which is the analog for z-couplings in the notation of [27].

10 Note that in order to be able to make sense of the formula for the anomalous dimensions g̃i for general
i, the terms involving factorials of negative numbers in the denominators are interpreted to be zero by
analytic continuation.
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OPE coefficients are read off the quadratic expansion of the beta functions

Anomalous dimensions of composite operators
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Other studies

• Multicritical higher derivative theories: there can be many                            
marginal operators at criticality, results still to be understood in CFT. 

Safari, G.P.V.,     Phys. Rev. D98 (2017) 081701,           EPJ C78 (2018) 251

• Potts models (cubic)                          Potts models (quintic)
Osborn, Stergiou     arXiv:1707.06165 Codello, Safari, G.P.V., Zanusso    in preparation

• Shift symmetric theories
Safari, G.P.V.   in preparation

Multifield theories 

Non trivial in d=3

Perturbative ε-expansion useful guide towards non perturbative regimes.
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Non perturbative functional RG flows
Perturbation theory is very powerful to derive some qualitative informations 
even for infinite set of universal data, but for strongly interacting theories 
non perturbative tools are needed. 

• Wilsonian flows: 
     require the partition function to be independent from a UV cutoff. 
     In general one can have

In the case of such a spectrally adjusted proper time regulator one obtains for the incomplete

Gamma form the flow equation

⇤
d

d⇤
S⇤['] = Tr

"✓
1 +
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2
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d

d⇤
logZ⇤

◆ 
m⇤2Z⇤

S(2)
⇤ ['] +m⇤2Z⇤

!m#
. (III.1)

In the limit m ! 1 one gets
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d

d⇤
logZ⇤

◆
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⇤

[']
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3

5 . (III.2)

In the presence of also an IR cuto↵ k one should introduce Zk,⇤ ! Z⇤ for k ! ⇤ and such

that
�
k d
dk + ⇤ d

d⇤

�
Zk,⇤ = 0 so that one can derive the same flow equation taking a derivative

w.r.t k d
dk or ⇤ d

d⇤ .

IV. RELATION TO FORMAL COARSE-GRAINING SCHEMES

Let us consider the general proper time regularization leading to the family of wilsonian flows

as given in Eq. (I.11) (the dot stand for a derivative with respect to log⇤)

Ṡ⇤['] =
1

2
tr

Z 1

0

ds

s
⇢̇k,⇤(s) e

�sS
(2)
⇤ ['] (IV.1)

and try to understand how to obtain them from a more formal point of view.

The coarse-graining procedure for the wilsonian action in the most general form, which leaves

the partition function and therefore the physics invariant, can be defined as

⇤
d

d⇤
e�S⇤['] =

Z
dx

�

�'(x)

⇣
 x[']e

�S⇤[']
⌘

(IV.2)

for some  x['], so that the partition function Z =
R
[d']e�S⇤['] is manifestly indepedendent

from ⇤. The object  x['] in in general non trivially dependent on the wilsonian action and on

the coarse-graining scheme of the kind '(x) = b⇤['0](x), where '0 is associated to the scale ⇤0

to another wilsonian action S⇤0 . One can derive the following relation

 ⇤
x ['] = eS⇤[']

Z
[d'0]�('� b⇤['0])⇤

db⇤['0](x)

d⇤
e�S⇤0 ['0] , (IV.3)

see for example [4, 5]. It is then natural to ask which kind of contraints should  x['] satisfy in

order to realize the coarse-graining associated to the flow in Eq. (I.11), as a particular realization

of the more general flow equation, related to Eq. (IV.2),

⇤
d

d⇤
S⇤['] =

Z
dx

✓
�S⇤[']

�'(x)
 x[']�

� x[']

�'(x)

◆
. (IV.4)

6

We also remind that this general wilsonian flow is associated to the field redefinition '(x) !

'0(x) = '(x)� �⇤
⇤  

⇤
x ['].

Let us first recall what happens in the case of the Wilsonian flow considered by Polchinski.

Indeed this task is easily achievable since one can directly guess the form of  ⇤
x ['] to be plugged

in the general formula (IV.4),

 ⇤
x ['] =

1

2

Z
dz �̇xz

�⌃[']

�'(z)
, (IV.5)

where � is a suitably regulated propagator with a dot standing for the derivative w.r.t. log⇤

and ⌃['] is given by

⌃⇤['] = �1

2

Z
dx'(x)(�2x)'(x) + SI

⇤['] , S⇤['] =
1

2

Z
dx'(x)(�2x)'(x) + SI

⇤['] . (IV.6)

This choice leads to the desired flow equation
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We note that one has one has the following relation

�

�'(y)
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2

Z
dz �̇xz

�2⌃[']

�'(y)�'(z)
6= �

�'(x)
 ⇤
y ['] (IV.8)

so that no A['] does exist such that  ⇤
x ['] =

�A[']
�'(x) .

Let us now consider the general flow based on the proper time regularization and reformulate

it, using Eqs. (IV.1) and (IV.2), as

Z
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We observe that a su�cient (but not necessary) condition to obtain the proper time wilsonian

flow equation is encoded in the following equation

�
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where Qxy can be in general any kernel with a zero trace. If the regulator ⇢k,⇤(s) is space-time

independent (this is important when considering spectrally adjusted schemes which may spoil

this property) one has
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In general the flow induced by coarse-graining  
corresponds to a non trivial action-dependent field redefinition

In the case of such a spectrally adjusted proper time regulator one obtains for the incomplete

Gamma form the flow equation
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In the limit m ! 1 one gets
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In the presence of also an IR cuto↵ k one should introduce Zk,⇤ ! Z⇤ for k ! ⇤ and such

that
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Zk,⇤ = 0 so that one can derive the same flow equation taking a derivative

w.r.t k d
dk or ⇤ d

d⇤ .

IV. RELATION TO FORMAL COARSE-GRAINING SCHEMES

Let us consider the general proper time regularization leading to the family of wilsonian flows

as given in Eq. (I.11) (the dot stand for a derivative with respect to log⇤)
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and try to understand how to obtain them from a more formal point of view.

The coarse-graining procedure for the wilsonian action in the most general form, which leaves

the partition function and therefore the physics invariant, can be defined as
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for some  x['], so that the partition function Z =
R
[d']e�S⇤['] is manifestly indepedendent

from ⇤. The object  x['] in in general non trivially dependent on the wilsonian action and on

the coarse-graining scheme of the kind '(x) = b⇤['0](x), where '0 is associated to the scale ⇤0

to another wilsonian action S⇤0 . One can derive the following relation
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see for example [4, 5]. It is then natural to ask which kind of contraints should  x['] satisfy in

order to realize the coarse-graining associated to the flow in Eq. (I.11), as a particular realization

of the more general flow equation, related to Eq. (IV.2),
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In the case of such a spectrally adjusted proper time regulator one obtains for the incomplete

Gamma form the flow equation
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In the presence of also an IR cuto↵ k one should introduce Zk,⇤ ! Z⇤ for k ! ⇤ and such

that
�
k d
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Zk,⇤ = 0 so that one can derive the same flow equation taking a derivative

w.r.t k d
dk or ⇤ d

d⇤ .

IV. RELATION TO FORMAL COARSE-GRAINING SCHEMES

Let us consider the general proper time regularization leading to the family of wilsonian flows

as given in Eq. (I.11) (the dot stand for a derivative with respect to log⇤)
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and try to understand how to obtain them from a more formal point of view.
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for some  x['], so that the partition function Z =
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from ⇤. The object  x['] in in general non trivially dependent on the wilsonian action and on
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see for example [4, 5]. It is then natural to ask which kind of contraints should  x['] satisfy in
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Wilson-Polchinski RG flows
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Ṡ⇤ =
1

2
Tr


�̇H

✓
�
2
S⇤

��L��L
� �S⇤

��L

�S⇤

��L

◆�
� 1

2
Tr

h
�̇H��1

H

i
� µ̇⇤

µ⇤

˙⌘ ⇤@⇤ (1.10)

e
��k[�̄] =

Z
D� µk e

�S[�]+
��

k

��̄
·(���̄)��Sk[���̄]

(1.11)

�Sk[�] =
1
2�·Rk · �

�[ †
, ,�

†
,�] =

Z
dDx d⌧

✓
ZP (

1

2
 
†$
@⌧ � ↵

0
P 

†r2
 ) + ZO(

1

2
�
†$
@⌧�� ↵

0
O�

†r2
�) + Vk[ , 

†
,�,�

†]

◆

Rk(p2) > 0 for p2 ⌧ k
2

2

1

Z⇤0 [J ] =

Z
[d'] e�

1
2'·�

�1·'�SI

⇤0
[']+J ·' (1.1)

' = 'L + 'H (1.2)

� = �L +�H (1.3)

e
W⇤['L,J ] = Z⇤['L, J ] = e

� 1
2J ·�H ·J+J ·'L�SI

⇤[�H ·J+'L] (1.4)

e
�S⇤[�L] =

Z
D� µ⇤ e

�S[�]� 1
2 (���L)�

�1
H

(���L) (1.5)

S
I
⇤ (1.6)

|p| < ⇤ (1.7)

�⇤['
c] +

1

2
('c � �) ·�H · ('c � �) = S

I
⇤[�] (1.8)
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1 + ṽ00k

Rk(p
2) = (k2�p

2)✓(k2�p
2) (1.15)

µP =
✏

12
, �

2 =
8⇡2

3
✏, ⌘P = � ✏

6
, ⇣P = ⇣O =

✏

12
, (1.16)

µO =
95+17

p
33

2304
✏, �

2
2 =

23
p
6+11

p
22

48
✏, �3 = 0, ⌘O = �7+

p
33

72
✏, r =

3

16
(
p
33�1).

Moreover the spectral analysis of the stability matrix is able to show the other universal quan-

tities of the system, apart from the anomalous dimensions. In particular we find two negative

eigenvalues, associated to two relevant directions, and the corresponding critical exponents:

↵1 = �2 +
✏

4
! ⌫P =

1

2
+

✏

16

↵2 = �2 +
✏

12
! ⌫O =

1

2
+

✏

48
. (1.17)

3

e
�Wk[J ] = Zk[J ] = e

��Sk[
�

�J
]
Zk[J ] =

Z
[d'] e�S[']��Sk[']+J ·' (1.14)

�Sk['] =
1
2'·Rk · '

�[ †
, ,�

†
,�] =

Z
dDx d⌧

✓
ZP (

1

2
 
†$
@⌧ � ↵

0
P 

†r2
 ) + ZO(

1

2
�
†$
@⌧�� ↵

0
O�

†r2
�) + Vk[ , 

†
,�,�

†]

◆

Rk(p2) > 0 for p2 ⌧ k
2

Rk(p2) ! 0 for p2 � k
2

Rk(p2) ! 1 for k ! ⇤ (! 1)

@t�k =
1

2
Tr

⇣
�(2)
k +Rk

⌘�1
@tRk

�
� µ̇k

µk

t = ln k/k0

�k[�] =

Z
ddx

(
Vk(�) +

1

2
Zk(�)(@�)

2 +
1

2
X1,k(�)(@

2
�)2 +

1

4
X2,k(�)(@�)

4 + · · ·
)

�k[�] =
X

n

1

n!

Z
dx1 · · · dxn�(n)(�0)x1···xn

(���0)x1 · · · (���0)xn

˙̃vk(�) = �d ṽk +
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Multicritical Yukawa theories
Consider a QFT of one real scalar field and Dirac fermions Symmetries: 

Introduction

QFT of one real scalar field and Dirac fermions
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ḣ = (⌘ � 1)h+
d� 2 + ⌘�

2
�h0 +

Cd

2

42h
�
h0
�2
 

1�
⌘ 
d+1

(1 + h2)2 (1 + v00)
+

1�
⌘�
d+2

(1 + h2) (1 + v00)2

!
�

h00
⇣
1�

⌘�
d+2

⌘

(1 + v00)2

3

5 (I.3)

where we have defined the constant Cd such that C�1
d = (4⇡)d/2�

�
1 +

d
2

�
. The fixed points

giving the scaling solutions in the LPA are determined by solving the coupled system of two

ordinary di↵erential equations

0 = �dv +
d� 2

2
� v0 + Cd

✓
1

1 + v00
�

Xf

1 + h2

◆
(I.4)

2

I. FORMULAE

The truncation we consider is the following:

�k

⇥
�, ,  ̄

⇤
=

Z
d
4x

✓
1

2
Z�,k @

µ�@µ�+ Vk(�) + Z ,k ̄�
µi@µ + iHk(�)  ̄  

◆
(I.1)

First symmetry: U(Nf ) is assumed. There is a special symmetry one may consider which is the

Z2 symmetry requinring the invariance over � ! ��. For systems linked to standard Yukawa

system which are parametrized by H(�) = y� which are odd under Z2 then one requires that

spinor transform as  ! i and  ̄ ! i ̄. A generalization of local interactions with such

a symmetry then requires an odd H�). There are Nf Dirac fermions in a representation of

dimension d� . (Nf , d�) and we define Xf = Nf d� for simplicity. There is also the possibility to

have unchanged spinors under the transformation, which would require an even function H(�).

In this work we shall consider the case of an odd Yukawa potential H.

We shall make our analysis in the LPA approximation (lowest order of the derivative expan-

sion, with Z� = Z = 1 and therefore zero anomalous dimensions)

(Not sure we want to write more in general... nevertheless the flow equation for the two

potentials in the LPA’ (including a dependence in the anomalous dimensions))

After rescaling to dimensionless variables, the flow equation for the two potentials are given

by

v̇ = �dv +
d� 2 + ⌘�

2
� v0 + Cd

 
1�

⌘�
d+2

1 + v00
�Xf

1�
⌘ 
d+1

1 + h2

!
(I.2)
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Typically the lagrangian density one considers is: 
and a polynomial form of the scalar potential is used. 
Gies, Scherer 2010  (d=4)  , Rosa, Vitale, Wetterich 2001 , Sonoda 2011  (d=3) , …..
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For a SUSY model both the scalar potential and Yukawa interactions in the on shell lagrangian density 
are dependent on the same function. A study in term of polynomial truncations has been done. 
Synatschke, Braun, Wipf  2010   (d=3)

2

corrections to fermionic and bosonic masses, has been
determined in the real-time formulation in [22]. The in-
evitable breaking of supersymmetry at finite temperature
has sometimes been called spontaneous collapse of super-
symmetry [23].
In Sect. IV we derive the RG flow equations at finite

temperature. In addition to the momentum integrals we
are confronted with sums over Matsubara frequencies.
For the three-dimensional Wess-Zumino model and for a
particular regulator the thermal sums can be calculated
analytically. Related sums have been discussed in earlier
works on finite-temperature renormalization group flow
equations, for example in [24–27, 29–32]. We observe
that the Wess-Zumino model in three dimensions at finite
temperature in the 2 symmetric phase behaves similarly
to a gas of massless bosons. In particular we show in
Sect. IVA that it obeys the Stefan-Boltzmann law in
three dimensions. For high temperatures the fermions
do not contribute to the flow equations since they do not
have a thermal zero-mode. On the other hand we observe
dimensional reduction in the bosonic part of the model
due to the presence of a thermal zero-mode. We show in
Sect. IVB how this is manifested in our RG framework.
In a similar way dimensional reduction has been observed
in O(N)-models at finite temperature in [33, 34]. Finally
we compute the phase diagram for the restoration of the
global Z2 symmetry at finite temperature in Sect. IVC.

II. THE N = 1 WESS-ZUMINO MODEL IN
THREE DIMENSIONS AT T = 0

There are many works on the supersymmetric Wess-
Zumino models in both four and two space-time di-
mensions. Actually the two-dimensional model with
N = 2 supersymmetries is just the toroidal compactifi-
cation of the four-dimensional N = 1 model. The three-
dimensional model with N = 1 supersymmetry, on the
other hand, cannot be obtained by dimensional reduction
of a local field theory in four dimensions. Thus it may be
useful to recall the construction of the three-dimensional
model starting from the real superfield

Φ(x,α) = φ(x) + ᾱψ(x) +
1

2
ᾱαF (x) (1)

with real (pseudo)scalar fields φ, F and Majorana spinor-
field ψ. The supersymmetry variations are generated by
the supercharge

δβΦ = iβ̄QΦ, Q = −i
∂

∂ᾱ
− (γµα)∂µ . (2)

We use the metric tensor (ηµν) = diag(1,−1−1) to lower
Lorentz indices. With the aid of the symmetry relations
for Majorana spinors ψ̄χ = χ̄ψ, ψ̄γµχ = −χ̄γµψ and the
particular Fierz identity αᾱ = −ᾱα /2 the transforma-
tion laws for the component fields follow from Eq. (2):

δφ = β̄ψ, δψ = (F + i/∂φ)β, δF = iβ̄ /∂ψ . (3)

The anticommutator of two supercharges yields
{

Qα, Q̄β
}

= 2(γµ)α
β∂µ. The supercovariant derivatives

are

D =
∂

∂ᾱ
+ i(γµα)∂µ, and D̄ = −

∂

∂α
− i(ᾱγµ)∂µ. (4)

Up to a sign they obey the same anticommutation rela-
tion as the supercharges

{Dα, D̄β} = −2(γ)α
β∂µ . (5)

As kinetic term we choose the D term of D̄ΦDΦ =
2ᾱαLkin + . . . which reads

Lkin =
1

2
∂µφ∂

µφ−
i

2
ψ̄/∂ψ +

1

2
F 2. (6)

The interaction term is the D term of 2W (Φ) = ᾱαLint+
. . . and contains a Yukawa term,

Lint = FW ′(φ)−
1

2
W ′′(φ)ψ̄ψ. (7)

The complete off-shell Lagrange density Loff = Lkin+Lint

takes then the simple form

Loff =
1

2
∂µφ∂

µφ−
i

2
ψ̄/∂ψ+

1

2
F 2+FW ′(φ)−

1

2
W ′′(φ)ψ̄ψ.

(8)
Eliminating the auxiliary field via its equation of motion
F = −W ′(φ), we end up with the on-shell density

Lon =
1

2
∂µφ∂

µφ−
i

2
ψ̄/∂ψ −

1

2
W ′2(φ) −

1

2
W ′′(φ)ψ̄ψ.

(9)

From this expression we read off that W ′2(φ) acts as
a self-interaction potential for the scalar fields. For a
polynomial superpotential W (φ) in which the power of
the leading term is even, W (φ) = cφ2n +O(φ2n), we do
not observe supersymmetry breaking in our present non-
perturbative renormalization group study1. On the other
hand spontaneous supersymmetry breaking is definitely
possible for a superpotential in which the power of the
leading term is odd. In the explicit calculations we shall
use a Majorana representation for the γ-matrices, γ0 =
σ2, γ1 = iσ3 and γ2 = iσ1.

III. FLOW EQUATION AT ZERO
TEMPERATURE

To find a manifestly supersymmetric flow equation in
the off-shell formulation we extend our earlier results on

1 In a two-loop calculation a ground state with broken super-
symmetry has been found in Ref. [36]. Since we neglect higher
F -terms in our non-perturbative study it is not possible to check
whether the findings of this perturbative analysis of the Wess-
Zumino model hold when higher-order corrections are taken into
account.

Here we shall study this QFT using the following truncation where we neglect terms related to 2n fermion 
interactions (n>1) which may exist depending on 
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Typically the lagrangian density one considers is: 
and a polynomial form of the scalar potential is used. 
Gies, Scherer 2010  (d=4)  , Rosa, Vitale, Wetterich 2001 , Sonoda 2011  (d=3) , …..
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For a SUSY model both the scalar potential and Yukawa interactions in the on shell lagrangian density 
are dependent on the same function. A study in term of polynomial truncations has been done. 
Synatschke, Braun, Wipf  2010   (d=3)
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corrections to fermionic and bosonic masses, has been
determined in the real-time formulation in [22]. The in-
evitable breaking of supersymmetry at finite temperature
has sometimes been called spontaneous collapse of super-
symmetry [23].
In Sect. IV we derive the RG flow equations at finite

temperature. In addition to the momentum integrals we
are confronted with sums over Matsubara frequencies.
For the three-dimensional Wess-Zumino model and for a
particular regulator the thermal sums can be calculated
analytically. Related sums have been discussed in earlier
works on finite-temperature renormalization group flow
equations, for example in [24–27, 29–32]. We observe
that the Wess-Zumino model in three dimensions at finite
temperature in the 2 symmetric phase behaves similarly
to a gas of massless bosons. In particular we show in
Sect. IVA that it obeys the Stefan-Boltzmann law in
three dimensions. For high temperatures the fermions
do not contribute to the flow equations since they do not
have a thermal zero-mode. On the other hand we observe
dimensional reduction in the bosonic part of the model
due to the presence of a thermal zero-mode. We show in
Sect. IVB how this is manifested in our RG framework.
In a similar way dimensional reduction has been observed
in O(N)-models at finite temperature in [33, 34]. Finally
we compute the phase diagram for the restoration of the
global Z2 symmetry at finite temperature in Sect. IVC.

II. THE N = 1 WESS-ZUMINO MODEL IN
THREE DIMENSIONS AT T = 0

There are many works on the supersymmetric Wess-
Zumino models in both four and two space-time di-
mensions. Actually the two-dimensional model with
N = 2 supersymmetries is just the toroidal compactifi-
cation of the four-dimensional N = 1 model. The three-
dimensional model with N = 1 supersymmetry, on the
other hand, cannot be obtained by dimensional reduction
of a local field theory in four dimensions. Thus it may be
useful to recall the construction of the three-dimensional
model starting from the real superfield

Φ(x,α) = φ(x) + ᾱψ(x) +
1

2
ᾱαF (x) (1)

with real (pseudo)scalar fields φ, F and Majorana spinor-
field ψ. The supersymmetry variations are generated by
the supercharge

δβΦ = iβ̄QΦ, Q = −i
∂

∂ᾱ
− (γµα)∂µ . (2)

We use the metric tensor (ηµν) = diag(1,−1−1) to lower
Lorentz indices. With the aid of the symmetry relations
for Majorana spinors ψ̄χ = χ̄ψ, ψ̄γµχ = −χ̄γµψ and the
particular Fierz identity αᾱ = −ᾱα /2 the transforma-
tion laws for the component fields follow from Eq. (2):

δφ = β̄ψ, δψ = (F + i/∂φ)β, δF = iβ̄ /∂ψ . (3)

The anticommutator of two supercharges yields
{

Qα, Q̄β
}

= 2(γµ)α
β∂µ. The supercovariant derivatives

are

D =
∂

∂ᾱ
+ i(γµα)∂µ, and D̄ = −

∂

∂α
− i(ᾱγµ)∂µ. (4)

Up to a sign they obey the same anticommutation rela-
tion as the supercharges

{Dα, D̄β} = −2(γ)α
β∂µ . (5)

As kinetic term we choose the D term of D̄ΦDΦ =
2ᾱαLkin + . . . which reads

Lkin =
1

2
∂µφ∂

µφ−
i

2
ψ̄/∂ψ +

1

2
F 2. (6)

The interaction term is the D term of 2W (Φ) = ᾱαLint+
. . . and contains a Yukawa term,

Lint = FW ′(φ)−
1

2
W ′′(φ)ψ̄ψ. (7)

The complete off-shell Lagrange density Loff = Lkin+Lint

takes then the simple form

Loff =
1

2
∂µφ∂

µφ−
i

2
ψ̄/∂ψ+

1

2
F 2+FW ′(φ)−

1

2
W ′′(φ)ψ̄ψ.

(8)
Eliminating the auxiliary field via its equation of motion
F = −W ′(φ), we end up with the on-shell density

Lon =
1

2
∂µφ∂

µφ−
i

2
ψ̄/∂ψ −

1

2
W ′2(φ) −

1

2
W ′′(φ)ψ̄ψ.

(9)

From this expression we read off that W ′2(φ) acts as
a self-interaction potential for the scalar fields. For a
polynomial superpotential W (φ) in which the power of
the leading term is even, W (φ) = cφ2n +O(φ2n), we do
not observe supersymmetry breaking in our present non-
perturbative renormalization group study1. On the other
hand spontaneous supersymmetry breaking is definitely
possible for a superpotential in which the power of the
leading term is odd. In the explicit calculations we shall
use a Majorana representation for the γ-matrices, γ0 =
σ2, γ1 = iσ3 and γ2 = iσ1.

III. FLOW EQUATION AT ZERO
TEMPERATURE

To find a manifestly supersymmetric flow equation in
the off-shell formulation we extend our earlier results on

1 In a two-loop calculation a ground state with broken super-
symmetry has been found in Ref. [36]. Since we neglect higher
F -terms in our non-perturbative study it is not possible to check
whether the findings of this perturbative analysis of the Wess-
Zumino model hold when higher-order corrections are taken into
account.

Here we shall study this QFT using the following truncation where we neglect terms related to 2n fermion 
interactions (n>1) which may exist depending on 
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Typically the lagrangian density one considers is: 
and a polynomial form of the scalar potential is used. 
Gies, Scherer 2010  (d=4)  , Rosa, Vitale, Wetterich 2001 , Sonoda 2011  (d=3) , …..
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For a SUSY model both the scalar potential and Yukawa interactions in the on shell lagrangian density 
are dependent on the same function. A study in term of polynomial truncations has been done. 
Synatschke, Braun, Wipf  2010   (d=3)
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corrections to fermionic and bosonic masses, has been
determined in the real-time formulation in [22]. The in-
evitable breaking of supersymmetry at finite temperature
has sometimes been called spontaneous collapse of super-
symmetry [23].
In Sect. IV we derive the RG flow equations at finite

temperature. In addition to the momentum integrals we
are confronted with sums over Matsubara frequencies.
For the three-dimensional Wess-Zumino model and for a
particular regulator the thermal sums can be calculated
analytically. Related sums have been discussed in earlier
works on finite-temperature renormalization group flow
equations, for example in [24–27, 29–32]. We observe
that the Wess-Zumino model in three dimensions at finite
temperature in the 2 symmetric phase behaves similarly
to a gas of massless bosons. In particular we show in
Sect. IVA that it obeys the Stefan-Boltzmann law in
three dimensions. For high temperatures the fermions
do not contribute to the flow equations since they do not
have a thermal zero-mode. On the other hand we observe
dimensional reduction in the bosonic part of the model
due to the presence of a thermal zero-mode. We show in
Sect. IVB how this is manifested in our RG framework.
In a similar way dimensional reduction has been observed
in O(N)-models at finite temperature in [33, 34]. Finally
we compute the phase diagram for the restoration of the
global Z2 symmetry at finite temperature in Sect. IVC.

II. THE N = 1 WESS-ZUMINO MODEL IN
THREE DIMENSIONS AT T = 0

There are many works on the supersymmetric Wess-
Zumino models in both four and two space-time di-
mensions. Actually the two-dimensional model with
N = 2 supersymmetries is just the toroidal compactifi-
cation of the four-dimensional N = 1 model. The three-
dimensional model with N = 1 supersymmetry, on the
other hand, cannot be obtained by dimensional reduction
of a local field theory in four dimensions. Thus it may be
useful to recall the construction of the three-dimensional
model starting from the real superfield

Φ(x,α) = φ(x) + ᾱψ(x) +
1

2
ᾱαF (x) (1)

with real (pseudo)scalar fields φ, F and Majorana spinor-
field ψ. The supersymmetry variations are generated by
the supercharge

δβΦ = iβ̄QΦ, Q = −i
∂

∂ᾱ
− (γµα)∂µ . (2)

We use the metric tensor (ηµν) = diag(1,−1−1) to lower
Lorentz indices. With the aid of the symmetry relations
for Majorana spinors ψ̄χ = χ̄ψ, ψ̄γµχ = −χ̄γµψ and the
particular Fierz identity αᾱ = −ᾱα /2 the transforma-
tion laws for the component fields follow from Eq. (2):

δφ = β̄ψ, δψ = (F + i/∂φ)β, δF = iβ̄ /∂ψ . (3)

The anticommutator of two supercharges yields
{

Qα, Q̄β
}

= 2(γµ)α
β∂µ. The supercovariant derivatives

are

D =
∂

∂ᾱ
+ i(γµα)∂µ, and D̄ = −

∂

∂α
− i(ᾱγµ)∂µ. (4)

Up to a sign they obey the same anticommutation rela-
tion as the supercharges

{Dα, D̄β} = −2(γ)α
β∂µ . (5)

As kinetic term we choose the D term of D̄ΦDΦ =
2ᾱαLkin + . . . which reads

Lkin =
1

2
∂µφ∂

µφ−
i

2
ψ̄/∂ψ +

1

2
F 2. (6)

The interaction term is the D term of 2W (Φ) = ᾱαLint+
. . . and contains a Yukawa term,

Lint = FW ′(φ)−
1

2
W ′′(φ)ψ̄ψ. (7)

The complete off-shell Lagrange density Loff = Lkin+Lint

takes then the simple form

Loff =
1

2
∂µφ∂

µφ−
i

2
ψ̄/∂ψ+

1

2
F 2+FW ′(φ)−

1

2
W ′′(φ)ψ̄ψ.

(8)
Eliminating the auxiliary field via its equation of motion
F = −W ′(φ), we end up with the on-shell density

Lon =
1

2
∂µφ∂

µφ−
i

2
ψ̄/∂ψ −

1

2
W ′2(φ) −

1

2
W ′′(φ)ψ̄ψ.

(9)

From this expression we read off that W ′2(φ) acts as
a self-interaction potential for the scalar fields. For a
polynomial superpotential W (φ) in which the power of
the leading term is even, W (φ) = cφ2n +O(φ2n), we do
not observe supersymmetry breaking in our present non-
perturbative renormalization group study1. On the other
hand spontaneous supersymmetry breaking is definitely
possible for a superpotential in which the power of the
leading term is odd. In the explicit calculations we shall
use a Majorana representation for the γ-matrices, γ0 =
σ2, γ1 = iσ3 and γ2 = iσ1.

III. FLOW EQUATION AT ZERO
TEMPERATURE

To find a manifestly supersymmetric flow equation in
the off-shell formulation we extend our earlier results on

1 In a two-loop calculation a ground state with broken super-
symmetry has been found in Ref. [36]. Since we neglect higher
F -terms in our non-perturbative study it is not possible to check
whether the findings of this perturbative analysis of the Wess-
Zumino model hold when higher-order corrections are taken into
account.

Here we shall study this QFT using the following truncation where we neglect terms related to 2n fermion 
interactions (n>1) which may exist depending on 
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In this work we shall consider the case of an odd Yukawa potential H.

We shall make our analysis in the LPA approximation (lowest order of the derivative expan-

sion, with Z� = Z = 1 and therefore zero anomalous dimensions)

(Not sure we want to write more in general... nevertheless the flow equation for the two

potentials in the LPA’ (including a dependence in the anomalous dimensions))

After rescaling to dimensionless variables, the flow equation for the two potentials are given

by
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where we have defined the constant Cd such that C�1
d = (4⇡)d/2�

�
1 +

d
2

�
. The fixed points

giving the scaling solutions in the LPA are determined by solving the coupled system of two
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and essentially limiting ourself to the LPA (Z’s=1)

I. FORMULAE

The truncation we consider is the following:
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There is a special symmetry one may consider which is the Z2 symmetry requinring the

invariance over �! ��. For systems linked to standard Yukawa system which are parametrized

by H(�) = y� which are odd under Z2 then one requires that spinor transform as  ! i and
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case of an odd Yukawa potential H.
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sion, with Z� = Z = 1 and therefore zero anomalous dimensions)

(Not sure we want to write more in general... nevertheless the flow equation for the two

potentials in the LPA’ (including a dependence in the anomalous dimensions))
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where we have defined the constant Cd such that C�1
d = (4⇡)d/2�
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. The fixed points

giving the scaling solutions in the LPA are determined by solving the coupled system of two

ordinary di↵erential equations
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A very recent work for quark-mesonic interactions also considers more general Yukawa interactions 
Pawlowski, Rennecke 1403.1179

We study the model at criticality with the flow of the effective average action 
in a local potential approximation (LPA) + (eventually) anomalous dimensions 

the approximations involved in the computation of the flow equations, and with the resulting

beta-functions. This is the object of the next Section and of App. A.

II. THE RG FLOW OF A SIMPLE YUKAWA MODEL WITH

MULTI-MESON-EXCHANGE.

The functional renormalization group (FRG) is a representation of quantum dynamics based

on Wilson’s idea of floating cuto↵ k. In this work we will adopt its formulation in terms of a

scale-dependent 1PI e↵ective action, called average e↵ective action [32]. For a given system, the

form of this action is determined by the field content � and by the symmetry properties, as well

as by an initial condition (bare action) and boundary conditions for the integration of the flow

equation

�̇k[�] =
1

2
STr

⇣
�(2)
k [�] +Rk

⌘�1
Ṙk

�
. (II.1)

Here (�(2)
k [�]+Rk)�1 represents the matrix of regularized propagators, while Rk is a momentum-

dependent mass-like regulator. Since the dot stands for di↵erentiation with respect to the RG

time t = log k, this flow equation comprehends the infinite set of beta functions for the infinitely

many allowed interactions inside �k. Extracting them amounts to projecting both sides of

the equation on each separate interaction functional. In practical computations, one drops

infinitely many operators, thus performing a nonperturbative approximation called truncation

of the theory space. To this end, several systematic strategies are available and appropriate in

di↵erent circumstances, such as the vertex expansion or the derivate expansion. For reviews

see [33].

In this work we will consider the following truncation:
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Here � is a real scalar field, while  denotes Nf copies of a spinor field with d� real components.

The latter parameter is related to the symmetries of the system and plays therefore a crucial

role in pure fermionic as well as in fermion-boson models. Yet, as long as we truncate the

theory space to the ansatz of Eq. (II.2), focusing on the mechanism of Z2-symmetry breaking,

we can simply deal with the total number of real Grassmannian degrees of freedom Xf = d�Nf ,

considering it as an arbitrary real number. As soon as Xf � 2 the truncation above is missing

purely fermionic derivative-free interactions, that are indeed symmetry-sensitive and that would

5

Truncation:

Physics also for interacting fermion systems, for SUSY models/emergent susy,  
quark-mesonic interactions,…

they take for the linear regulator, which is our choice in this work since it allows for a simple

analytic computation of such integrals. For this linear regulator the flow equations of the two

potentials, read
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where we have denoted for convenience Cd = 4vd/d.

A simple way of facilitating the stability of the vacuum is the requirement of Z2 symmetry, i.e.

invariance over � ! ��. For standard Yukawa system, with a linear bare Yukawa interaction

H(�) = y�, this requires a discrete chiral symmetry  ! i and  ̄ ! i ̄. A generalization of

local interactions with such a symmetry then requires an odd H(�). There is also the possibility

to let the spinors unchanged under the transformation, which would require an even function

H(�).

The goal of this work is to construct global FP solutions of the flow equations compatible

with the symmetry conditions, and to study the properties of the RG flow in their neighborhood.

The FPs, which describe scaling solutions, are computed by solving the coupled system of two

ordinary di↵erential equations v̇ = 0 and ḣ = 0 or, in some cases, from the equivalent system

for the quantities (v, y = h2). The dependence of such scaling solutions on the two parameters

d and Xf is one of the main themes discussed in the literature as well as in the present work.

Regarding the former, we will assume 2 < d  4 and qualitatively discuss how the number of

critical models varies with d, but we will especially concentrate on the properties of the d = 3

system. For the latter, we restrict ourselves to non-negative number of degrees of freedom, and

we start from the two simple limiting cases one can address. The simplest is Xf ! 0. In this

case, the fermion sector remains nontrivial, see Eqs. (II.4,II.6), but is not allowed to influence

the scalar dynamics, which is therefore identical to the fermion-free model, see Eqs. (II.3,II.5).

Hence, as far as criticality is concerned, we expect to observe the same pattern of FPs that can

be observed without fermions, with the same critical exponents in the scalar sector, even if at

generically nonvanishing values of the Yukawa couplings. The second limit which brings radical

simplifications is Xf ! 1, and it is discussed in the next Section.

7

contribute to the leading (zeroth) order of the derivative expansion. Furthermore, it is also

missing field-dependent contributions to the wave functions renormalizations Z� and Z , which

would appear in the next-to-leading (first) order of the derivative expansion. In the following we

will call the ansatz of Eq. (II.2) a local potential approximation (LPA) for this simple Yukawa

model, whenever the wave functions renormalizations are neglected (Z�,k = Z ,k = 1), and

therefore the fields have no anomalous dimensions ⌘�, = �@t logZ�, . The inclusion of the

latter will be named LPA0. Our justification for the choice of this truncation is in the exhaustive

evidence that similar ansätze give a good description of the existence and properties of conformal

models in 2 < d  4 for linear systems with scalar degrees of freedom [33].

Projection of the Wetterich equation on the truncation of Eq. (II.2) yields the running of

the corresponding parameters. Since we are interested in reproducing conformal models, that

correspond to scaling solutions of the RG flow, it is useful to consider rescaled amplitudes

� �!
k(d�2)/2

Z1/2
�

� ,  �!
k(d�1)/2

Z1/2
 

 

since the new dimensionless renormalized field would then be constant at criticality. As a

consequence we will focus on the potentials for these fields
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◆
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k�1

Z 
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✓
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In this new set of variables the flow equations read
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⌘ =
8vd
d

n
(h0)2m(FB)d

1,2 (h2, v00)
o
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where vd = (2d+1⇡d/2�(d/2))�1, the threshold functions l(F/B)d and m(F/B)d on the right hand

side denote regulator-dependent contributions from loops containing fermionic or bosonic prop-

agators, and the equations for the anomalous dimensions are to be evaluated at the minimum �0

of the scalar potential. Their definition can be found in App. A, together with the explicit form

6

Rescaled dimensionless quantities:

Flow equation for linear optimised regulators

Parameters of the problem: Symmetries:     even and     odd. v
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G.P.V., Zambelli    Phys. Rev. D91 (2015) 125003
Two functions
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Multicritical structure dictated  
by the marginal interactions,  
analysis with canonical dimensions

should be understood as a first step towards a proper description of these universality classes.

Only the d = 3 chiral Ising universality class will be later analyzed also in the LPA0, by resorting

to polynomial truncations of the potentials, see Sect. VI.

Since we look for odd Yukawa potentials, we can restrict the list of the operators that become

relevant at the corresponding critical dimensions:

�2n : dvc(n � 2) =
2n

n� 1
= 4, 3,

8

3
,
5

2
,
12

5
· · ·

�2n+1 ̄ : dhc (n � 0) =
4(n+ 1)

2n+ 1
= 4,

8

3
,
12

5
· · · (IV.1)

In order to reveal the new universality classes appearing below these dimensions, we follow the

strategy developed in [36], that was already successfully applied to the purely scalar model

in continuous dimensions [35]. This consists in solving the FP condition, which is a Cauchy

problem involving a system of two coupled second order ODEs, by a numerical shooting method,

i.e. varying the initial conditions in a space of parameters which is two dimensional, since two of

the four boundary conditions are fixed by the symmetry requirements (v0(0) = 0 and h(0) = 0).

For the potential v we choose as parameter � = v00(0), relating it to v(0) using the di↵erential

equation. For h we use h1 = h0(0). Trying to numerically solve the non linear di↵erential

equations with generic initial conditions, one typically encounters a singularity at some value

of �c(�, h1) where the algorithm stops. Such value increases in a steep way close to the initial

conditions which correspond to a global solution, even if the numerical errors mask partially this

behavior. As a consequence, in our case a three-dimensional plot for �c(�, h1) is very useful to

gain a first understanding of the positions of the possible FPs.

In Fig. 1 we show the results of this analysis, for Xf = 1 and for several dimensions: d =

5, 4, 3.9, 3.5, 3, 83 ,
8
3 �

1
10 ,

5
2 ,

12
5 . For d = 5 and d = 4, as it is expected, we see a single spike in

(�, h1) = (0, 0) which corresponds to the Gaußian solution. More details on this are given, for

Xf < 1, in Sect VII. In 3 < d < 4 we have crossed the threshold below which both the operators

�4 and � ̄ become relevant, as is shown in Eq. (IV.1). In this interval, it is evident from the

figure that we find three new spikes. One is characterized by h1 = 0 and � < 0 and corresponds

to the Ising critical solution. It is clearly visible in the fourth and fifth panels of Fig. 1, but not

in the third, since it is very close to the Gaußian FP. The other two are physically equivalent,

since they lie at opposite values of h1, and correspond to the chiral Ising universality class. They

have � < 0, which suggests that also these scaling solutions are in a broken regime for Xf = 1,

at least in the LPA approximation. Moving to 8
3 < d < 3 we cross the marginality-threshold for

12

Numerical analysis

• Numerical evolution from the origin                                                       
• Numerical evolution from the asymptotic region                                      
• Polynomial truncations                                                                               

Strategy:

Boundary conditions:

v0(0) = 0
<latexit sha1_base64="06RXpHCDZ8ey5N1Xs0t23mrMOdc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBaxXkpSBPUgFL14rGBsoQ1ls920SzebuLsplNA/4cWDild/jzf/jZs2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+waOKEkmoSyIeybaPFeVMUFczzWk7lhSHPqctf3Sb+a0xlYpF4kFPYuqFeCBYwAjWRmqPT6v22bVd6pUrds2eAS0TJycVyNHslb+6/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB1DBQ6p8tLZvVN0YpQ+CiJpSmg0U39PpDhUahL6pjPEeqgWvUz8z+skOrj0UibiRFNB5ouChCMdoex51GeSEs0nhmAimbkVkSGWmGgTURaCs/jyMnHrtauac39eadzkaRThCI6hCg5cQAPuoAkuEODwDK/wZj1ZL9a79TFvLVj5zCH8gfX5AwzTjjM=</latexit><latexit sha1_base64="06RXpHCDZ8ey5N1Xs0t23mrMOdc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBaxXkpSBPUgFL14rGBsoQ1ls920SzebuLsplNA/4cWDild/jzf/jZs2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+waOKEkmoSyIeybaPFeVMUFczzWk7lhSHPqctf3Sb+a0xlYpF4kFPYuqFeCBYwAjWRmqPT6v22bVd6pUrds2eAS0TJycVyNHslb+6/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB1DBQ6p8tLZvVN0YpQ+CiJpSmg0U39PpDhUahL6pjPEeqgWvUz8z+skOrj0UibiRFNB5ouChCMdoex51GeSEs0nhmAimbkVkSGWmGgTURaCs/jyMnHrtauac39eadzkaRThCI6hCg5cQAPuoAkuEODwDK/wZj1ZL9a79TFvLVj5zCH8gfX5AwzTjjM=</latexit><latexit sha1_base64="06RXpHCDZ8ey5N1Xs0t23mrMOdc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBaxXkpSBPUgFL14rGBsoQ1ls920SzebuLsplNA/4cWDild/jzf/jZs2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+waOKEkmoSyIeybaPFeVMUFczzWk7lhSHPqctf3Sb+a0xlYpF4kFPYuqFeCBYwAjWRmqPT6v22bVd6pUrds2eAS0TJycVyNHslb+6/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB1DBQ6p8tLZvVN0YpQ+CiJpSmg0U39PpDhUahL6pjPEeqgWvUz8z+skOrj0UibiRFNB5ouChCMdoex51GeSEs0nhmAimbkVkSGWmGgTURaCs/jyMnHrtauac39eadzkaRThCI6hCg5cQAPuoAkuEODwDK/wZj1ZL9a79TFvLVj5zCH8gfX5AwzTjjM=</latexit><latexit sha1_base64="06RXpHCDZ8ey5N1Xs0t23mrMOdc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBaxXkpSBPUgFL14rGBsoQ1ls920SzebuLsplNA/4cWDild/jzf/jZs2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+waOKEkmoSyIeybaPFeVMUFczzWk7lhSHPqctf3Sb+a0xlYpF4kFPYuqFeCBYwAjWRmqPT6v22bVd6pUrds2eAS0TJycVyNHslb+6/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB1DBQ6p8tLZvVN0YpQ+CiJpSmg0U39PpDhUahL6pjPEeqgWvUz8z+skOrj0UibiRFNB5ouChCMdoex51GeSEs0nhmAimbkVkSGWmGgTURaCs/jyMnHrtauac39eadzkaRThCI6hCg5cQAPuoAkuEODwDK/wZj1ZL9a79TFvLVj5zCH8gfX5AwzTjjM=</latexit>

h(0) = 0
<latexit sha1_base64="bBw6OkjVkatUsWc8AxQ4l6jgPqw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahXspGBPUgFL14rGBsoQ1ls920SzebsLsRSuiP8OJBxav/x5v/xk2bg7Y+GHi8N8PMvCARXBuMv53Syura+kZ5s7K1vbO7V90/eNRxqijzaCxi1QmIZoJL5hluBOskipEoEKwdjG9zv/3ElOaxfDCThPkRGUoeckqMldqjOj69xpV+tYYbeAa0TNyC1KBAq1/96g1imkZMGiqI1l0XJ8bPiDKcCjat9FLNEkLHZMi6lkoSMe1ns3On6MQqAxTGypY0aKb+nshIpPUkCmxnRMxIL3q5+J/XTU146WdcJqlhks4XhalAJkb572jAFaNGTCwhVHF7K6Ijogg1NqE8BHfx5WXinTWuGu79ea15U6RRhiM4hjq4cAFNuIMWeEBhDM/wCm9O4rw4787HvLXkFDOH8AfO5w+WAo30</latexit><latexit sha1_base64="bBw6OkjVkatUsWc8AxQ4l6jgPqw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahXspGBPUgFL14rGBsoQ1ls920SzebsLsRSuiP8OJBxav/x5v/xk2bg7Y+GHi8N8PMvCARXBuMv53Syura+kZ5s7K1vbO7V90/eNRxqijzaCxi1QmIZoJL5hluBOskipEoEKwdjG9zv/3ElOaxfDCThPkRGUoeckqMldqjOj69xpV+tYYbeAa0TNyC1KBAq1/96g1imkZMGiqI1l0XJ8bPiDKcCjat9FLNEkLHZMi6lkoSMe1ns3On6MQqAxTGypY0aKb+nshIpPUkCmxnRMxIL3q5+J/XTU146WdcJqlhks4XhalAJkb572jAFaNGTCwhVHF7K6Ijogg1NqE8BHfx5WXinTWuGu79ea15U6RRhiM4hjq4cAFNuIMWeEBhDM/wCm9O4rw4787HvLXkFDOH8AfO5w+WAo30</latexit><latexit sha1_base64="bBw6OkjVkatUsWc8AxQ4l6jgPqw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahXspGBPUgFL14rGBsoQ1ls920SzebsLsRSuiP8OJBxav/x5v/xk2bg7Y+GHi8N8PMvCARXBuMv53Syura+kZ5s7K1vbO7V90/eNRxqijzaCxi1QmIZoJL5hluBOskipEoEKwdjG9zv/3ElOaxfDCThPkRGUoeckqMldqjOj69xpV+tYYbeAa0TNyC1KBAq1/96g1imkZMGiqI1l0XJ8bPiDKcCjat9FLNEkLHZMi6lkoSMe1ns3On6MQqAxTGypY0aKb+nshIpPUkCmxnRMxIL3q5+J/XTU146WdcJqlhks4XhalAJkb572jAFaNGTCwhVHF7K6Ijogg1NqE8BHfx5WXinTWuGu79ea15U6RRhiM4hjq4cAFNuIMWeEBhDM/wCm9O4rw4787HvLXkFDOH8AfO5w+WAo30</latexit><latexit sha1_base64="bBw6OkjVkatUsWc8AxQ4l6jgPqw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahXspGBPUgFL14rGBsoQ1ls920SzebsLsRSuiP8OJBxav/x5v/xk2bg7Y+GHi8N8PMvCARXBuMv53Syura+kZ5s7K1vbO7V90/eNRxqijzaCxi1QmIZoJL5hluBOskipEoEKwdjG9zv/3ElOaxfDCThPkRGUoeckqMldqjOj69xpV+tYYbeAa0TNyC1KBAq1/96g1imkZMGiqI1l0XJ8bPiDKcCjat9FLNEkLHZMi6lkoSMe1ns3On6MQqAxTGypY0aKb+nshIpPUkCmxnRMxIL3q5+J/XTU146WdcJqlhks4XhalAJkb572jAFaNGTCwhVHF7K6Ijogg1NqE8BHfx5WXinTWuGu79ea15U6RRhiM4hjq4cAFNuIMWeEBhDM/wCm9O4rw4787HvLXkFDOH8AfO5w+WAo30</latexit>

v00(0) = �
<latexit sha1_base64="vrYash7xQHE5u1dRTgtaqQBMYRs=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSKtl5KIoB6EohePFYwttLFstpt26W4SdjeVEvo/vHhQ8eqP8ea/cdPmoK0PBh7vzTAzz485U9q2v62l5ZXVtfXCRnFza3tnt7S3/6CiRBLqkohHsuVjRTkLqauZ5rQVS4qFz2nTH95kfnNEpWJReK/HMfUE7ocsYARrIz2OKpWqfXLVUawvcLFbKts1ewq0SJyclCFHo1v66vQikggaasKxUm3HjrWXYqkZ4XRS7CSKxpgMcZ+2DQ2xoMpLp1dP0LFReiiIpKlQo6n6eyLFQqmx8E2nwHqg5r1M/M9rJzq48FIWxommIZktChKOdISyCFCPSUo0HxuCiWTmVkQGWGKiTVBZCM78y4vEPa1d1py7s3L9Ok+jAIdwBFVw4BzqcAsNcIGAhGd4hTfryXqx3q2PWeuSlc8cwB9Ynz+ZW5DT</latexit><latexit sha1_base64="vrYash7xQHE5u1dRTgtaqQBMYRs=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSKtl5KIoB6EohePFYwttLFstpt26W4SdjeVEvo/vHhQ8eqP8ea/cdPmoK0PBh7vzTAzz485U9q2v62l5ZXVtfXCRnFza3tnt7S3/6CiRBLqkohHsuVjRTkLqauZ5rQVS4qFz2nTH95kfnNEpWJReK/HMfUE7ocsYARrIz2OKpWqfXLVUawvcLFbKts1ewq0SJyclCFHo1v66vQikggaasKxUm3HjrWXYqkZ4XRS7CSKxpgMcZ+2DQ2xoMpLp1dP0LFReiiIpKlQo6n6eyLFQqmx8E2nwHqg5r1M/M9rJzq48FIWxommIZktChKOdISyCFCPSUo0HxuCiWTmVkQGWGKiTVBZCM78y4vEPa1d1py7s3L9Ok+jAIdwBFVw4BzqcAsNcIGAhGd4hTfryXqx3q2PWeuSlc8cwB9Ynz+ZW5DT</latexit><latexit sha1_base64="vrYash7xQHE5u1dRTgtaqQBMYRs=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSKtl5KIoB6EohePFYwttLFstpt26W4SdjeVEvo/vHhQ8eqP8ea/cdPmoK0PBh7vzTAzz485U9q2v62l5ZXVtfXCRnFza3tnt7S3/6CiRBLqkohHsuVjRTkLqauZ5rQVS4qFz2nTH95kfnNEpWJReK/HMfUE7ocsYARrIz2OKpWqfXLVUawvcLFbKts1ewq0SJyclCFHo1v66vQikggaasKxUm3HjrWXYqkZ4XRS7CSKxpgMcZ+2DQ2xoMpLp1dP0LFReiiIpKlQo6n6eyLFQqmx8E2nwHqg5r1M/M9rJzq48FIWxommIZktChKOdISyCFCPSUo0HxuCiWTmVkQGWGKiTVBZCM78y4vEPa1d1py7s3L9Ok+jAIdwBFVw4BzqcAsNcIGAhGd4hTfryXqx3q2PWeuSlc8cwB9Ynz+ZW5DT</latexit><latexit sha1_base64="vrYash7xQHE5u1dRTgtaqQBMYRs=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSKtl5KIoB6EohePFYwttLFstpt26W4SdjeVEvo/vHhQ8eqP8ea/cdPmoK0PBh7vzTAzz485U9q2v62l5ZXVtfXCRnFza3tnt7S3/6CiRBLqkohHsuVjRTkLqauZ5rQVS4qFz2nTH95kfnNEpWJReK/HMfUE7ocsYARrIz2OKpWqfXLVUawvcLFbKts1ewq0SJyclCFHo1v66vQikggaasKxUm3HjrWXYqkZ4XRS7CSKxpgMcZ+2DQ2xoMpLp1dP0LFReiiIpKlQo6n6eyLFQqmx8E2nwHqg5r1M/M9rJzq48FIWxommIZktChKOdISyCFCPSUo0HxuCiWTmVkQGWGKiTVBZCM78y4vEPa1d1py7s3L9Ok+jAIdwBFVw4BzqcAsNcIGAhGd4hTfryXqx3q2PWeuSlc8cwB9Ynz+ZW5DT</latexit>

h0(0) = h1
<latexit sha1_base64="9xl1qf1vuNq54JDhASXwZDIZhzo=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBaxXkoignoQil48VjC22Iay2W6apZtN2N0IJfRfePGg4tWf481/46bNQVsfDDzem2Fmnp9wprRtf1ulpeWV1bXyemVjc2t7p7q796DiVBLqkpjHsuNjRTkT1NVMc9pJJMWRz2nbH93kfvuJSsVica/HCfUiPBQsYARrIz2Gx3X75CrsO5V+tWY37CnQInEKUoMCrX71qzeISRpRoQnHSnUdO9FehqVmhNNJpZcqmmAywkPaNVTgiCovm148QUdGGaAglqaERlP190SGI6XGkW86I6xDNe/l4n9eN9XBhZcxkaSaCjJbFKQc6Rjl76MBk5RoPjYEE8nMrYiEWGKiTUh5CM78y4vEPW1cNpy7s1rzukijDAdwCHVw4ByacAstcIGAgGd4hTdLWS/Wu/Uxay1Zxcw+/IH1+QN0I48B</latexit><latexit sha1_base64="9xl1qf1vuNq54JDhASXwZDIZhzo=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBaxXkoignoQil48VjC22Iay2W6apZtN2N0IJfRfePGg4tWf481/46bNQVsfDDzem2Fmnp9wprRtf1ulpeWV1bXyemVjc2t7p7q796DiVBLqkpjHsuNjRTkT1NVMc9pJJMWRz2nbH93kfvuJSsVica/HCfUiPBQsYARrIz2Gx3X75CrsO5V+tWY37CnQInEKUoMCrX71qzeISRpRoQnHSnUdO9FehqVmhNNJpZcqmmAywkPaNVTgiCovm148QUdGGaAglqaERlP190SGI6XGkW86I6xDNe/l4n9eN9XBhZcxkaSaCjJbFKQc6Rjl76MBk5RoPjYEE8nMrYiEWGKiTUh5CM78y4vEPW1cNpy7s1rzukijDAdwCHVw4ByacAstcIGAgGd4hTdLWS/Wu/Uxay1Zxcw+/IH1+QN0I48B</latexit><latexit sha1_base64="9xl1qf1vuNq54JDhASXwZDIZhzo=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBaxXkoignoQil48VjC22Iay2W6apZtN2N0IJfRfePGg4tWf481/46bNQVsfDDzem2Fmnp9wprRtf1ulpeWV1bXyemVjc2t7p7q796DiVBLqkpjHsuNjRTkT1NVMc9pJJMWRz2nbH93kfvuJSsVica/HCfUiPBQsYARrIz2Gx3X75CrsO5V+tWY37CnQInEKUoMCrX71qzeISRpRoQnHSnUdO9FehqVmhNNJpZcqmmAywkPaNVTgiCovm148QUdGGaAglqaERlP190SGI6XGkW86I6xDNe/l4n9eN9XBhZcxkaSaCjJbFKQc6Rjl76MBk5RoPjYEE8nMrYiEWGKiTUh5CM78y4vEPW1cNpy7s1rzukijDAdwCHVw4ByacAstcIGAgGd4hTdLWS/Wu/Uxay1Zxcw+/IH1+QN0I48B</latexit><latexit sha1_base64="9xl1qf1vuNq54JDhASXwZDIZhzo=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBaxXkoignoQil48VjC22Iay2W6apZtN2N0IJfRfePGg4tWf481/46bNQVsfDDzem2Fmnp9wprRtf1ulpeWV1bXyemVjc2t7p7q796DiVBLqkpjHsuNjRTkT1NVMc9pJJMWRz2nbH93kfvuJSsVica/HCfUiPBQsYARrIz2Gx3X75CrsO5V+tWY37CnQInEKUoMCrX71qzeISRpRoQnHSnUdO9FehqVmhNNJpZcqmmAywkPaNVTgiCovm148QUdGGaAglqaERlP190SGI6XGkW86I6xDNe/l4n9eN9XBhZcxkaSaCjJbFKQc6Rjl76MBk5RoPjYEE8nMrYiEWGKiTUh5CM78y4vEPW1cNpy7s1rzukijDAdwCHVw4ByacAstcIGAgGd4hTdLWS/Wu/Uxay1Zxcw+/IH1+QN0I48B</latexit>

Numerical evolution from the origin

We provide the boundary (initial condition): v0(0) = 0 , h(0) = 0

Let us show how far a numerical resolutor can evolve from the origin before encountering a singularity. 
!
Example with

and

5

2
<

8

3
< 3 < 4Xf = 1

d

d:  4    3.98   3.9    3.75    3.5

d:  3.25    3   2.9    8/3    2.57

�5 < h1 < 5

4 and  8/3 are critical for both potentials, 3 and 5/2 are critical only for the scalar potential.

v00(0) = � , h0(0) = h1

�0.5 < � < 0.5

Xf = 1
<latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit><latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit><latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit><latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit>
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From the origin 

FIG. 2: Spike plot for d = 8
3 �

1
10 and Xf = 1, zoomed area around the origin.

FIG. 3: Spike plot for d = 8
3 �

1
10 and Xf = 1, zoomed area around the origin.

be important for a study of the quality of polynomial expansions, presented in Sect. VI . The

latter approach is very useful especially in the case of the LPA0, which gives us access to a

self-consistent computation of the anomalous dimensions without enlarging the truncation to a

full next-to-leading order of the derivative expansion. Clearly this programmatic analysis can

be repeated for other values of d.

We choose to construct a global numerical solution by starting from the knowledge of the

asymptotic behavior allowed by the FP equations. Once the asymptotic expansions are deter-

mined with su�cient accuracy we proceed, with a shooting method, to the numerical integration

from the asymptotic region towards the origin. The properties of the solutions which reach the

origin depend on the free parameters in the asymptotic expansions. By requiring the solutions to

15
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Numerical analysis from the asymptotic region

Some properties of the fully non trivial LPA scaling solutions in d=3:  
if                   the scalar is in the broken phase.Xf < 1.64
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FIG. 4: The potentials v and h at the global scaling solution, computed numerically within the LPA.

The case Xf = 1, which is in the broken regime, appears in the first two panels (top), while Xf = 2, in

the symmetric regime, is shown in the last two panels (bottom).
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FIG. 5: The values of the asymptotic parameters (A,B) defined by Eq. (V.1) at the scaling solutions,

varying Xf in the range 10�3 < Xf < 3.

and then keeping the first term in ✏, for ✏ ⌧ 1. Such a procedure leads to the following eigenvalue
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FIG. 6: The values of (v00(0),h0(0)) from the numerical global scaling solutions, varying Xf in the range

10�3 < Xf < 3. One can notice the transition from the broken to the symmetric regime, which occurs

at Xf ' 1.64 for the present LPA.

FIG. 7: The vacuum expectation value �0(Xf ) from the numerical global scaling solutions is shown in

the left panel, while in the right panel we plot the corresponding value of h0(�0)(Xf ), both in the LPA.
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FIG. 6: The values of (v00(0),h0(0)) from the numerical global scaling solutions, varying Xf in the range

10�3 < Xf < 3. One can notice the transition from the broken to the symmetric regime, which occurs

at Xf ' 1.64 for the present LPA.

FIG. 7: The vacuum expectation value �0(Xf ) from the numerical global scaling solutions is shown in

the left panel, while in the right panel we plot the corresponding value of h0(�0)(Xf ), both in the LPA.
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<latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit><latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit><latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit><latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit>

Xf = 2
<latexit sha1_base64="CCdES3woGzsbjLmE5Ru8rVtW7PE=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR1INQ9OKxgrGFNpTNdtMu3WzC7kQoob/BiwcVr/4hb/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbJa2yts7u3v7lYPDR5NkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4up36rSeujUjUA45THsR0oEQkGEUr+e1edF3vVapuzZ2BLBOvIFUo0OxVvrr9hGUxV8gkNabjuSkGOdUomOSTcjczPKVsRAe8Y6miMTdBPjt2Qk6t0idRom0pJDP190ROY2PGcWg7Y4pDs+hNxf+8TobRZZALlWbIFZsvijJJMCHTz0lfaM5Qji2hTAt7K2FDqilDm0/ZhuAtvrxM/Hrtqubdn1cbN0UaJTiGEzgDDy6gAXfQBB8YCHiGV3hzlPPivDsf89YVp5g5gj9wPn8AjReODA==</latexit><latexit sha1_base64="CCdES3woGzsbjLmE5Ru8rVtW7PE=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR1INQ9OKxgrGFNpTNdtMu3WzC7kQoob/BiwcVr/4hb/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbJa2yts7u3v7lYPDR5NkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4up36rSeujUjUA45THsR0oEQkGEUr+e1edF3vVapuzZ2BLBOvIFUo0OxVvrr9hGUxV8gkNabjuSkGOdUomOSTcjczPKVsRAe8Y6miMTdBPjt2Qk6t0idRom0pJDP190ROY2PGcWg7Y4pDs+hNxf+8TobRZZALlWbIFZsvijJJMCHTz0lfaM5Qji2hTAt7K2FDqilDm0/ZhuAtvrxM/Hrtqubdn1cbN0UaJTiGEzgDDy6gAXfQBB8YCHiGV3hzlPPivDsf89YVp5g5gj9wPn8AjReODA==</latexit><latexit sha1_base64="CCdES3woGzsbjLmE5Ru8rVtW7PE=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR1INQ9OKxgrGFNpTNdtMu3WzC7kQoob/BiwcVr/4hb/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbJa2yts7u3v7lYPDR5NkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4up36rSeujUjUA45THsR0oEQkGEUr+e1edF3vVapuzZ2BLBOvIFUo0OxVvrr9hGUxV8gkNabjuSkGOdUomOSTcjczPKVsRAe8Y6miMTdBPjt2Qk6t0idRom0pJDP190ROY2PGcWg7Y4pDs+hNxf+8TobRZZALlWbIFZsvijJJMCHTz0lfaM5Qji2hTAt7K2FDqilDm0/ZhuAtvrxM/Hrtqubdn1cbN0UaJTiGEzgDDy6gAXfQBB8YCHiGV3hzlPPivDsf89YVp5g5gj9wPn8AjReODA==</latexit><latexit sha1_base64="CCdES3woGzsbjLmE5Ru8rVtW7PE=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR1INQ9OKxgrGFNpTNdtMu3WzC7kQoob/BiwcVr/4hb/4bt20O2vpg4PHeDDPzwlQKg6777aysrq1vbJa2yts7u3v7lYPDR5NkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4up36rSeujUjUA45THsR0oEQkGEUr+e1edF3vVapuzZ2BLBOvIFUo0OxVvrr9hGUxV8gkNabjuSkGOdUomOSTcjczPKVsRAe8Y6miMTdBPjt2Qk6t0idRom0pJDP190ROY2PGcWg7Y4pDs+hNxf+8TobRZZALlWbIFZsvijJJMCHTz0lfaM5Qji2hTAt7K2FDqilDm0/ZhuAtvrxM/Hrtqubdn1cbN0UaJTiGEzgDDy6gAXfQBB8YCHiGV3hzlPPivDsf89YVp5g5gj9wPn8AjReODA==</latexit>

Locus of the solutions in the 
plane             as function of (�, h1)

<latexit sha1_base64="uqGhnsznwbHYvyy6+pOqqTQa+KQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBahgpREBPVW9OKxgrGFJpTNdtMu3d2E3Y1QQv+GFw8qXv013vw3btsctPXBwOO9GWbmRSln2rjut1NaWV1b3yhvVra2d3b3qvsHjzrJFKE+SXiiOhHWlDNJfcMMp51UUSwiTtvR6Hbqt5+o0iyRD2ac0lDggWQxI9hYKagHmg0EPhv2vNNeteY23BnQMvEKUoMCrV71K+gnJBNUGsKx1l3PTU2YY2UY4XRSCTJNU0xGeEC7lkosqA7z2c0TdGKVPooTZUsaNFN/T+RYaD0Wke0U2Az1ojcV//O6mYmvwpzJNDNUkvmiOOPIJGgaAOozRYnhY0swUczeisgQK0yMjaliQ/AWX14m/nnjuuHdX9SaN0UaZTiCY6iDB5fQhDtogQ8EUniGV3hzMufFeXc+5q0lp5g5hD9wPn8AKzOQqA==</latexit><latexit sha1_base64="uqGhnsznwbHYvyy6+pOqqTQa+KQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBahgpREBPVW9OKxgrGFJpTNdtMu3d2E3Y1QQv+GFw8qXv013vw3btsctPXBwOO9GWbmRSln2rjut1NaWV1b3yhvVra2d3b3qvsHjzrJFKE+SXiiOhHWlDNJfcMMp51UUSwiTtvR6Hbqt5+o0iyRD2ac0lDggWQxI9hYKagHmg0EPhv2vNNeteY23BnQMvEKUoMCrV71K+gnJBNUGsKx1l3PTU2YY2UY4XRSCTJNU0xGeEC7lkosqA7z2c0TdGKVPooTZUsaNFN/T+RYaD0Wke0U2Az1ojcV//O6mYmvwpzJNDNUkvmiOOPIJGgaAOozRYnhY0swUczeisgQK0yMjaliQ/AWX14m/nnjuuHdX9SaN0UaZTiCY6iDB5fQhDtogQ8EUniGV3hzMufFeXc+5q0lp5g5hD9wPn8AKzOQqA==</latexit><latexit sha1_base64="uqGhnsznwbHYvyy6+pOqqTQa+KQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBahgpREBPVW9OKxgrGFJpTNdtMu3d2E3Y1QQv+GFw8qXv013vw3btsctPXBwOO9GWbmRSln2rjut1NaWV1b3yhvVra2d3b3qvsHjzrJFKE+SXiiOhHWlDNJfcMMp51UUSwiTtvR6Hbqt5+o0iyRD2ac0lDggWQxI9hYKagHmg0EPhv2vNNeteY23BnQMvEKUoMCrV71K+gnJBNUGsKx1l3PTU2YY2UY4XRSCTJNU0xGeEC7lkosqA7z2c0TdGKVPooTZUsaNFN/T+RYaD0Wke0U2Az1ojcV//O6mYmvwpzJNDNUkvmiOOPIJGgaAOozRYnhY0swUczeisgQK0yMjaliQ/AWX14m/nnjuuHdX9SaN0UaZTiCY6iDB5fQhDtogQ8EUniGV3hzMufFeXc+5q0lp5g5hD9wPn8AKzOQqA==</latexit><latexit sha1_base64="uqGhnsznwbHYvyy6+pOqqTQa+KQ=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBahgpREBPVW9OKxgrGFJpTNdtMu3d2E3Y1QQv+GFw8qXv013vw3btsctPXBwOO9GWbmRSln2rjut1NaWV1b3yhvVra2d3b3qvsHjzrJFKE+SXiiOhHWlDNJfcMMp51UUSwiTtvR6Hbqt5+o0iyRD2ac0lDggWQxI9hYKagHmg0EPhv2vNNeteY23BnQMvEKUoMCrV71K+gnJBNUGsKx1l3PTU2YY2UY4XRSCTJNU0xGeEC7lkosqA7z2c0TdGKVPooTZUsaNFN/T+RYaD0Wke0U2Az1ojcV//O6mYmvwpzJNDNUkvmiOOPIJGgaAOozRYnhY0swUczeisgQK0yMjaliQ/AWX14m/nnjuuHdX9SaN0UaZTiCY6iDB5fQhDtogQ8EUniGV3hzMufFeXc+5q0lp5g5hD9wPn8AKzOQqA==</latexit>

Xf
<latexit sha1_base64="LtQms99hil35ujdtrnfhAaCo/wY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvt2LetWaW3dnIMvEK0gNCjR71a9uP2FZzBUySY3peG6KQU41Cib5pNLNDE8pG9EB71iqaMxNkM9OnZATq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBnkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTsSF4iy8vE/+sflX37s5rjesijTIcwTGcggcX0IBbaIIPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AJj0jYk=</latexit><latexit sha1_base64="LtQms99hil35ujdtrnfhAaCo/wY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvt2LetWaW3dnIMvEK0gNCjR71a9uP2FZzBUySY3peG6KQU41Cib5pNLNDE8pG9EB71iqaMxNkM9OnZATq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBnkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTsSF4iy8vE/+sflX37s5rjesijTIcwTGcggcX0IBbaIIPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AJj0jYk=</latexit><latexit sha1_base64="LtQms99hil35ujdtrnfhAaCo/wY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvt2LetWaW3dnIMvEK0gNCjR71a9uP2FZzBUySY3peG6KQU41Cib5pNLNDE8pG9EB71iqaMxNkM9OnZATq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBnkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTsSF4iy8vE/+sflX37s5rjesijTIcwTGcggcX0IBbaIIPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AJj0jYk=</latexit><latexit sha1_base64="LtQms99hil35ujdtrnfhAaCo/wY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpvt2LetWaW3dnIMvEK0gNCjR71a9uP2FZzBUySY3peG6KQU41Cib5pNLNDE8pG9EB71iqaMxNkM9OnZATq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBnkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTsSF4iy8vE/+sflX37s5rjesijTIcwTGcggcX0IBbaIIPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AJj0jYk=</latexit>

Vacuum

At large field values one can construct the asymptotic expansion of the solution as a function of free 
parameters and then evolve numerically towards the origin imposing the known boundary conditions                   

v0(0) = 0
<latexit sha1_base64="06RXpHCDZ8ey5N1Xs0t23mrMOdc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBaxXkpSBPUgFL14rGBsoQ1ls920SzebuLsplNA/4cWDild/jzf/jZs2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+waOKEkmoSyIeybaPFeVMUFczzWk7lhSHPqctf3Sb+a0xlYpF4kFPYuqFeCBYwAjWRmqPT6v22bVd6pUrds2eAS0TJycVyNHslb+6/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB1DBQ6p8tLZvVN0YpQ+CiJpSmg0U39PpDhUahL6pjPEeqgWvUz8z+skOrj0UibiRFNB5ouChCMdoex51GeSEs0nhmAimbkVkSGWmGgTURaCs/jyMnHrtauac39eadzkaRThCI6hCg5cQAPuoAkuEODwDK/wZj1ZL9a79TFvLVj5zCH8gfX5AwzTjjM=</latexit><latexit sha1_base64="06RXpHCDZ8ey5N1Xs0t23mrMOdc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBaxXkpSBPUgFL14rGBsoQ1ls920SzebuLsplNA/4cWDild/jzf/jZs2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+waOKEkmoSyIeybaPFeVMUFczzWk7lhSHPqctf3Sb+a0xlYpF4kFPYuqFeCBYwAjWRmqPT6v22bVd6pUrds2eAS0TJycVyNHslb+6/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB1DBQ6p8tLZvVN0YpQ+CiJpSmg0U39PpDhUahL6pjPEeqgWvUz8z+skOrj0UibiRFNB5ouChCMdoex51GeSEs0nhmAimbkVkSGWmGgTURaCs/jyMnHrtauac39eadzkaRThCI6hCg5cQAPuoAkuEODwDK/wZj1ZL9a79TFvLVj5zCH8gfX5AwzTjjM=</latexit><latexit sha1_base64="06RXpHCDZ8ey5N1Xs0t23mrMOdc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBaxXkpSBPUgFL14rGBsoQ1ls920SzebuLsplNA/4cWDild/jzf/jZs2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+waOKEkmoSyIeybaPFeVMUFczzWk7lhSHPqctf3Sb+a0xlYpF4kFPYuqFeCBYwAjWRmqPT6v22bVd6pUrds2eAS0TJycVyNHslb+6/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB1DBQ6p8tLZvVN0YpQ+CiJpSmg0U39PpDhUahL6pjPEeqgWvUz8z+skOrj0UibiRFNB5ouChCMdoex51GeSEs0nhmAimbkVkSGWmGgTURaCs/jyMnHrtauac39eadzkaRThCI6hCg5cQAPuoAkuEODwDK/wZj1ZL9a79TFvLVj5zCH8gfX5AwzTjjM=</latexit><latexit sha1_base64="06RXpHCDZ8ey5N1Xs0t23mrMOdc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBaxXkpSBPUgFL14rGBsoQ1ls920SzebuLsplNA/4cWDild/jzf/jZs2B219MPB4b4aZeX7MmdK2/W0VVlbX1jeKm6Wt7Z3dvfL+waOKEkmoSyIeybaPFeVMUFczzWk7lhSHPqctf3Sb+a0xlYpF4kFPYuqFeCBYwAjWRmqPT6v22bVd6pUrds2eAS0TJycVyNHslb+6/YgkIRWacKxUx7Fj7aVYakY4nZa6iaIxJiM8oB1DBQ6p8tLZvVN0YpQ+CiJpSmg0U39PpDhUahL6pjPEeqgWvUz8z+skOrj0UibiRFNB5ouChCMdoex51GeSEs0nhmAimbkVkSGWmGgTURaCs/jyMnHrtauac39eadzkaRThCI6hCg5cQAPuoAkuEODwDK/wZj1ZL9a79TFvLVj5zCH8gfX5AwzTjjM=</latexit>

h(0) = 0
<latexit sha1_base64="bBw6OkjVkatUsWc8AxQ4l6jgPqw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahXspGBPUgFL14rGBsoQ1ls920SzebsLsRSuiP8OJBxav/x5v/xk2bg7Y+GHi8N8PMvCARXBuMv53Syura+kZ5s7K1vbO7V90/eNRxqijzaCxi1QmIZoJL5hluBOskipEoEKwdjG9zv/3ElOaxfDCThPkRGUoeckqMldqjOj69xpV+tYYbeAa0TNyC1KBAq1/96g1imkZMGiqI1l0XJ8bPiDKcCjat9FLNEkLHZMi6lkoSMe1ns3On6MQqAxTGypY0aKb+nshIpPUkCmxnRMxIL3q5+J/XTU146WdcJqlhks4XhalAJkb572jAFaNGTCwhVHF7K6Ijogg1NqE8BHfx5WXinTWuGu79ea15U6RRhiM4hjq4cAFNuIMWeEBhDM/wCm9O4rw4787HvLXkFDOH8AfO5w+WAo30</latexit><latexit sha1_base64="bBw6OkjVkatUsWc8AxQ4l6jgPqw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahXspGBPUgFL14rGBsoQ1ls920SzebsLsRSuiP8OJBxav/x5v/xk2bg7Y+GHi8N8PMvCARXBuMv53Syura+kZ5s7K1vbO7V90/eNRxqijzaCxi1QmIZoJL5hluBOskipEoEKwdjG9zv/3ElOaxfDCThPkRGUoeckqMldqjOj69xpV+tYYbeAa0TNyC1KBAq1/96g1imkZMGiqI1l0XJ8bPiDKcCjat9FLNEkLHZMi6lkoSMe1ns3On6MQqAxTGypY0aKb+nshIpPUkCmxnRMxIL3q5+J/XTU146WdcJqlhks4XhalAJkb572jAFaNGTCwhVHF7K6Ijogg1NqE8BHfx5WXinTWuGu79ea15U6RRhiM4hjq4cAFNuIMWeEBhDM/wCm9O4rw4787HvLXkFDOH8AfO5w+WAo30</latexit><latexit sha1_base64="bBw6OkjVkatUsWc8AxQ4l6jgPqw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahXspGBPUgFL14rGBsoQ1ls920SzebsLsRSuiP8OJBxav/x5v/xk2bg7Y+GHi8N8PMvCARXBuMv53Syura+kZ5s7K1vbO7V90/eNRxqijzaCxi1QmIZoJL5hluBOskipEoEKwdjG9zv/3ElOaxfDCThPkRGUoeckqMldqjOj69xpV+tYYbeAa0TNyC1KBAq1/96g1imkZMGiqI1l0XJ8bPiDKcCjat9FLNEkLHZMi6lkoSMe1ns3On6MQqAxTGypY0aKb+nshIpPUkCmxnRMxIL3q5+J/XTU146WdcJqlhks4XhalAJkb572jAFaNGTCwhVHF7K6Ijogg1NqE8BHfx5WXinTWuGu79ea15U6RRhiM4hjq4cAFNuIMWeEBhDM/wCm9O4rw4787HvLXkFDOH8AfO5w+WAo30</latexit><latexit sha1_base64="bBw6OkjVkatUsWc8AxQ4l6jgPqw=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBahXspGBPUgFL14rGBsoQ1ls920SzebsLsRSuiP8OJBxav/x5v/xk2bg7Y+GHi8N8PMvCARXBuMv53Syura+kZ5s7K1vbO7V90/eNRxqijzaCxi1QmIZoJL5hluBOskipEoEKwdjG9zv/3ElOaxfDCThPkRGUoeckqMldqjOj69xpV+tYYbeAa0TNyC1KBAq1/96g1imkZMGiqI1l0XJ8bPiDKcCjat9FLNEkLHZMi6lkoSMe1ns3On6MQqAxTGypY0aKb+nshIpPUkCmxnRMxIL3q5+J/XTU146WdcJqlhks4XhalAJkb572jAFaNGTCwhVHF7K6Ijogg1NqE8BHfx5WXinTWuGu79ea15U6RRhiM4hjq4cAFNuIMWeEBhDM/wCm9O4rw4787HvLXkFDOH8AfO5w+WAo30</latexit>
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FIG. 9: Comparison of the Xf = 1 global numerical solution in the LPA (blue, continuous) with the

corresponding (Nv = 9, Nh = 8) polynomial solutions, around the origin as in Eqs. (VI.1)-(VI.3) (red,

dotted), around a non trivial vacuum as in Eqs. (VI.4)-(VI.6) (brown, dashed) and in Eqs. (VI.4)-(VI.5)

(green, dot-dashed), for the potential v(�) (left panel) and the Yukawa function y(�) = h2(�) (right

panel).

FIG. 10: Comparison of the Xf = 1 global numerical solution in the LPA (blue, continuous) with the

corresponding (Nv = 9, Nh = 1) polynomial solutions, around the origin as in Eqs. (VI.1)-(VI.3) (red,

dotted) and around a non trivial vacuum as in Eqs. (VI.4)-(VI.5) (green, dot-dashed), for the potential

v(�) (left panel) and the Yukawa function h(�) (right panel).

analysis also indicates. Indeed in Sect. V we found that the constants A and B wildly grow

from Xf = 3 on, in practice making the construnction of FP potentials harder and harder. This

problem is easily addressed by means of the polynomial expansions. The results obtained with

a (9, 8)-truncation, both for h(�) and y(⇢), are shown in Tab. IV and Tab. V.

As expected, the anomalous dimensions show a very di↵erent Xf -dependence. Starting with
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FIG. 8: Case d = 3 and Xf = 1: the components �v and �h of the relevant eigenperturbation, from the

global numerical analysis of the LPA.

to the other scaling solutions in 2 < d < 3, presumably with the same degree of success.

Sect. VIA will present results obtained within the LPA, which can be directly compared to the

full functional analysis developed in the previous Section. This will make us confident about the

e↵ectiveness and soundness of polynomial truncations, as well as of the necessity to go beyond a

simple linear Yukawa coupling for an accurate description of critical properties of the theory. On

these grounds, Sect. VIB will push forward the analysis to a self-consistent inclusion of the wave

function renormalization of the fields, which is essential for quantitative estimates of the critical

exponents, which will be compared with some literature for several values of Xf . Polynomial

truncations will be also used in Sect. VII for some comments on the four-dimensional model.

Let us start by presenting the truncation schemes we are going to analyze. Since we restrict

ourselves to d = 3, we will demand v(�) and h(�) to be even and odd respectively. We will use

the common notation ⇢ = �2/2, and we will adopt only one name for one and the same quantity,

regarless of whether it is considered as a function of � or as a function of ⇢. In the symmetric

regime, the physically meaningful parameterization of the scalar potential is a Taylor expansion

around vanishing field

v(⇢) =
NvX

n=0

�n

n!
⇢n . (VI.1)

Regarding the Yukawa potential, we are interested in two possible Taylor expansions, one for
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h(�), already adopted in [31], and one for y(⇢) = [h(�)]2. In the symmetric regime they read

h(�) = �
Nh�1X

n=0

hn
n!
⇢n (VI.2)

y(⇢) =
NhX

n=1

yn
n!
⇢n . (VI.3)

In the regime of spontaneous symmetry breaking (SSB) the potential v(⇢) develops a nontrivial

minimum  = �20/2, which becomes the preferred reference point for a di↵erent Taylor expansion

v(⇢) = �0 +
NvX

n�2

�n
n!

(⇢� )n . (VI.4)

Though, in general,  is no special point for the function h(�), it still enters in the definition of

the vertex functions, from which one extracts the physical multi-meson Yukawa couplings. As

a consequence, in this regime it is necessary to change also the parameterizations of h(�) and

y(⇢), as follows

h(�) = �
Nh�1X

n=0

hn
n!

(⇢� )n (VI.5)

y(⇢) =
NhX

n=1

yn
n!

[(⇢� )n � (�)n] . (VI.6)

The pair (Nv, Nh), or more generally an ordering of the polynomial couplings by priority of

inclusion in the truncations, can be chosen by relying on naive dimensional counting, as in an

e↵ective field theory setup, or on the knowledge of the dynamics at a deeper level, e.g. a global

numerical solution for the FP functionals and the critical exponents. In the latter strategy one

would sort the critical exponents in order of relevance and would try to accurately describe the

corresponding perturbations. Alternatively, and maybe less e�ciently, one could scan over the

results produced by di↵erent pairs (Nv, Nh) and select them on the base of a comparison to

the global numerical solution. In the former strategy instead, since the dimension of a scalar

self-interaction �2n is n, and the one of a multi-meson Yukawa coupling  ̄�2n+1 is 5/2 + n,

we would expect that the pairs (Nv = D,Nh = D � 2), for the truncation of h(�) given in Eqs.

(VI.2,VI.5), correspond to including operators up to dimension D. However, since by truncating

at levelNh = D�2 we loose information about an operator of dimensionD+1/2, if we want to be

slightly more accurate we could include the latter and consider the pairs (Nv = D,Nh = D�1).

In our analysis we did perform to some extent a random scan over di↵erent pairs (Nv, Nh), and

we found that the two strategies nicely agree, so that (Nv = D,Nh = D � 1) is a very good
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In our analysis we did perform to some extent a random scan over di↵erent pairs (Nv, Nh), and

we found that the two strategies nicely agree, so that (Nv = D,Nh = D � 1) is a very good

22

h(�), already adopted in [31], and one for y(⇢) = [h(�)]2. In the symmetric regime they read

h(�) = �
Nh�1X

n=0

hn
n!
⇢n (VI.2)

y(⇢) =
NhX

n=1

yn
n!
⇢n . (VI.3)

In the regime of spontaneous symmetry breaking (SSB) the potential v(⇢) develops a nontrivial

minimum  = �20/2, which becomes the preferred reference point for a di↵erent Taylor expansion

v(⇢) = �0 +
NvX

n�2

�n
n!

(⇢� )n . (VI.4)

Though, in general,  is no special point for the function h(�), it still enters in the definition of

the vertex functions, from which one extracts the physical multi-meson Yukawa couplings. As

a consequence, in this regime it is necessary to change also the parameterizations of h(�) and

y(⇢), as follows

h(�) = �
Nh�1X

n=0

hn
n!

(⇢� )n (VI.5)

y(⇢) =
NhX

n=1

yn
n!

[(⇢� )n � (�)n] . (VI.6)

The pair (Nv, Nh), or more generally an ordering of the polynomial couplings by priority of

inclusion in the truncations, can be chosen by relying on naive dimensional counting, as in an

e↵ective field theory setup, or on the knowledge of the dynamics at a deeper level, e.g. a global

numerical solution for the FP functionals and the critical exponents. In the latter strategy one

would sort the critical exponents in order of relevance and would try to accurately describe the

corresponding perturbations. Alternatively, and maybe less e�ciently, one could scan over the

results produced by di↵erent pairs (Nv, Nh) and select them on the base of a comparison to

the global numerical solution. In the former strategy instead, since the dimension of a scalar

self-interaction �2n is n, and the one of a multi-meson Yukawa coupling  ̄�2n+1 is 5/2 + n,

we would expect that the pairs (Nv = D,Nh = D � 2), for the truncation of h(�) given in Eqs.

(VI.2,VI.5), correspond to including operators up to dimension D. However, since by truncating

at levelNh = D�2 we loose information about an operator of dimensionD+1/2, if we want to be

slightly more accurate we could include the latter and consider the pairs (Nv = D,Nh = D�1).

In our analysis we did perform to some extent a random scan over di↵erent pairs (Nv, Nh), and

we found that the two strategies nicely agree, so that (Nv = D,Nh = D � 1) is a very good

22

Nv = 9
<latexit sha1_base64="AwpezdaQKoQ2x57qO++QTkTVcN4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0B6EohdPUsHYQhvKZjtpl242YXdTKKW/wYsHFa/+IW/+G7dtDlp9MPB4b4aZeWEquDau++UUVlbX1jeKm6Wt7Z3dvfL+waNOMsXQZ4lIVCukGgWX6BtuBLZShTQOBTbD4c3Mb45QaZ7IBzNOMYhpX/KIM2qs5N91R1e1brniVt05yF/i5aQCORrd8menl7AsRmmYoFq3PTc1wYQqw5nAaamTaUwpG9I+ti2VNEYdTObHTsmJVXokSpQtachc/TkxobHW4zi0nTE1A73szcT/vHZmostgwmWaGZRssSjKBDEJmX1OelwhM2JsCWWK21sJG1BFmbH5lGwI3vLLf4l/Vq1VvfvzSv06T6MIR3AMp+DBBdThFhrgAwMOT/ACr450np03533RWnDymUP4BefjG6C2jhk=</latexit><latexit sha1_base64="AwpezdaQKoQ2x57qO++QTkTVcN4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0B6EohdPUsHYQhvKZjtpl242YXdTKKW/wYsHFa/+IW/+G7dtDlp9MPB4b4aZeWEquDau++UUVlbX1jeKm6Wt7Z3dvfL+waNOMsXQZ4lIVCukGgWX6BtuBLZShTQOBTbD4c3Mb45QaZ7IBzNOMYhpX/KIM2qs5N91R1e1brniVt05yF/i5aQCORrd8menl7AsRmmYoFq3PTc1wYQqw5nAaamTaUwpG9I+ti2VNEYdTObHTsmJVXokSpQtachc/TkxobHW4zi0nTE1A73szcT/vHZmostgwmWaGZRssSjKBDEJmX1OelwhM2JsCWWK21sJG1BFmbH5lGwI3vLLf4l/Vq1VvfvzSv06T6MIR3AMp+DBBdThFhrgAwMOT/ACr450np03533RWnDymUP4BefjG6C2jhk=</latexit><latexit sha1_base64="AwpezdaQKoQ2x57qO++QTkTVcN4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0B6EohdPUsHYQhvKZjtpl242YXdTKKW/wYsHFa/+IW/+G7dtDlp9MPB4b4aZeWEquDau++UUVlbX1jeKm6Wt7Z3dvfL+waNOMsXQZ4lIVCukGgWX6BtuBLZShTQOBTbD4c3Mb45QaZ7IBzNOMYhpX/KIM2qs5N91R1e1brniVt05yF/i5aQCORrd8menl7AsRmmYoFq3PTc1wYQqw5nAaamTaUwpG9I+ti2VNEYdTObHTsmJVXokSpQtachc/TkxobHW4zi0nTE1A73szcT/vHZmostgwmWaGZRssSjKBDEJmX1OelwhM2JsCWWK21sJG1BFmbH5lGwI3vLLf4l/Vq1VvfvzSv06T6MIR3AMp+DBBdThFhrgAwMOT/ACr450np03533RWnDymUP4BefjG6C2jhk=</latexit><latexit sha1_base64="AwpezdaQKoQ2x57qO++QTkTVcN4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0B6EohdPUsHYQhvKZjtpl242YXdTKKW/wYsHFa/+IW/+G7dtDlp9MPB4b4aZeWEquDau++UUVlbX1jeKm6Wt7Z3dvfL+waNOMsXQZ4lIVCukGgWX6BtuBLZShTQOBTbD4c3Mb45QaZ7IBzNOMYhpX/KIM2qs5N91R1e1brniVt05yF/i5aQCORrd8menl7AsRmmYoFq3PTc1wYQqw5nAaamTaUwpG9I+ti2VNEYdTObHTsmJVXokSpQtachc/TkxobHW4zi0nTE1A73szcT/vHZmostgwmWaGZRssSjKBDEJmX1OelwhM2JsCWWK21sJG1BFmbH5lGwI3vLLf4l/Vq1VvfvzSv06T6MIR3AMp+DBBdThFhrgAwMOT/ACr450np03533RWnDymUP4BefjG6C2jhk=</latexit>

Nh = 8
<latexit sha1_base64="HvKuC1HUReXgnXbYaP7FGrNz2rw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsB6EohdPUsHYQhvKZjttl242YXcjlNDf4MWDilf/kDf/jds2B219MPB4b4aZeWEiuDau++0UVlbX1jeKm6Wt7Z3dvfL+waOOU8XQZ7GIVSukGgWX6BtuBLYShTQKBTbD0c3Ubz6h0jyWD2acYBDRgeR9zqixkn/XHV7VuuWKW3VnIMvEy0kFcjS65a9OL2ZphNIwQbVue25igowqw5nASamTakwoG9EBti2VNEIdZLNjJ+TEKj3Sj5UtachM/T2R0UjrcRTazoiaoV70puJ/Xjs1/VqQcZmkBiWbL+qngpiYTD8nPa6QGTG2hDLF7a2EDamizNh8SjYEb/HlZeKfVS+r3v15pX6dp1GEIziGU/DgAupwCw3wgQGHZ3iFN0c6L8678zFvLTj5zCH8gfP5A4ntjgo=</latexit><latexit sha1_base64="HvKuC1HUReXgnXbYaP7FGrNz2rw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsB6EohdPUsHYQhvKZjttl242YXcjlNDf4MWDilf/kDf/jds2B219MPB4b4aZeWEiuDau++0UVlbX1jeKm6Wt7Z3dvfL+waOOU8XQZ7GIVSukGgWX6BtuBLYShTQKBTbD0c3Ubz6h0jyWD2acYBDRgeR9zqixkn/XHV7VuuWKW3VnIMvEy0kFcjS65a9OL2ZphNIwQbVue25igowqw5nASamTakwoG9EBti2VNEIdZLNjJ+TEKj3Sj5UtachM/T2R0UjrcRTazoiaoV70puJ/Xjs1/VqQcZmkBiWbL+qngpiYTD8nPa6QGTG2hDLF7a2EDamizNh8SjYEb/HlZeKfVS+r3v15pX6dp1GEIziGU/DgAupwCw3wgQGHZ3iFN0c6L8678zFvLTj5zCH8gfP5A4ntjgo=</latexit><latexit sha1_base64="HvKuC1HUReXgnXbYaP7FGrNz2rw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsB6EohdPUsHYQhvKZjttl242YXcjlNDf4MWDilf/kDf/jds2B219MPB4b4aZeWEiuDau++0UVlbX1jeKm6Wt7Z3dvfL+waOOU8XQZ7GIVSukGgWX6BtuBLYShTQKBTbD0c3Ubz6h0jyWD2acYBDRgeR9zqixkn/XHV7VuuWKW3VnIMvEy0kFcjS65a9OL2ZphNIwQbVue25igowqw5nASamTakwoG9EBti2VNEIdZLNjJ+TEKj3Sj5UtachM/T2R0UjrcRTazoiaoV70puJ/Xjs1/VqQcZmkBiWbL+qngpiYTD8nPa6QGTG2hDLF7a2EDamizNh8SjYEb/HlZeKfVS+r3v15pX6dp1GEIziGU/DgAupwCw3wgQGHZ3iFN0c6L8678zFvLTj5zCH8gfP5A4ntjgo=</latexit><latexit sha1_base64="HvKuC1HUReXgnXbYaP7FGrNz2rw=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsB6EohdPUsHYQhvKZjttl242YXcjlNDf4MWDilf/kDf/jds2B219MPB4b4aZeWEiuDau++0UVlbX1jeKm6Wt7Z3dvfL+waOOU8XQZ7GIVSukGgWX6BtuBLYShTQKBTbD0c3Ubz6h0jyWD2acYBDRgeR9zqixkn/XHV7VuuWKW3VnIMvEy0kFcjS65a9OL2ZphNIwQbVue25igowqw5nASamTakwoG9EBti2VNEIdZLNjJ+TEKj3Sj5UtachM/T2R0UjrcRTazoiaoV70puJ/Xjs1/VqQcZmkBiWbL+qngpiYTD8nPa6QGTG2hDLF7a2EDamizNh8SjYEb/HlZeKfVS+r3v15pX6dp1GEIziGU/DgAupwCw3wgQGHZ3iFN0c6L8678zFvLTj5zCH8gfP5A4ntjgo=</latexit>

Xf = 1
<latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit><latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit><latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit><latexit sha1_base64="mXy2FVE77Tn47o/99rco9JMmdnU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUA9C0YvHCsYW2lA220m7dLMJuxuhhP4GLx5UvPqHvPlv3LY5aOuDgcd7M8zMC1PBtXHdb6e0srq2vlHerGxt7+zuVfcPHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWObqd+6wmV5ol8MOMUg5gOJI84o8ZKfrsXXXu9as2tuzOQZeIVpAYFmr3qV7efsCxGaZigWnc8NzVBTpXhTOCk0s00ppSN6AA7lkoaow7y2bETcmKVPokSZUsaMlN/T+Q01noch7YzpmaoF72p+J/XyUx0GeRcpplByeaLokwQk5Dp56TPFTIjxpZQpri9lbAhVZQZm0/FhuAtvrxM/LP6Vd27P681boo0ynAEx3AKHlxAA+6gCT4w4PAMr/DmSOfFeXc+5q0lp5g5hD9wPn8Ai5SOCw==</latexit>

(Nv, Nh) (5, 1) (6,1) (7,1) (8,1) (9,1)

 9.208 10�3 9.210 10�3 9.212 10�3 9.213 10�3 9.212 10�3

�2 8.300 8.307 8.315 8.316 8.314

�3 72.23 72.45 72.77 72.82 72.71

y1 18.64 18.65 18.67 18.67 18.67

✓1 1.732 1.731 1.732 1.732 1.732

✓2 �0.5319 �0.5324 �0.5325 �0.5318 �0.5321

✓3 �1.626 �1.657 �1.676 �1.672 �1.664

⌘ 0.1886 0.1887 0.1887 0.1887 0.1887

⌘� 0.2680 0.2681 0.2683 0.2684 0.2683

(Nv, Nh) (5, 4) (6,5) (7,6) (8,7) (9,8)

 0.01079 0.01077 0.01078 0.01078 0.01078

�2 6.005 5.997 5.997 5.999 5.999

�3 60.83 60.43 60.50 60.59 60.56

y1 13.05 13.04 13.04 13.04 13.04

y2 152.0 151.4 151.7 151.8 151.7

✓1 1.444 1.443 1.443 1.443 1.443

✓2 �0.7710 �0.7738 �0.7745 �0.7743 �0.7741

✓3 �1.072 �1.077 �1.086 �1.086 �1.084

⌘ 0.1536 0.1536 0.1536 0.1536 0.1536

⌘� 0.2214 0.2211 0.2211 0.2212 0.2212

TABLE VII: Case d = 3 and Xf = 1, polynomial expansion of y(⇢) around a non trivial vacuum for both

the potential and the Yukawa function, in the LPA0, with or without the inclusion of multiple-meson-

exchange interactions (right and left panel respectively).

Xf 0.3 0.6 0.9 1.2 1.5 1.62

 2.377 10�2 1.793 10�2 1.253 10�2 7.316 10�3 2.171 10�3 1.164 10�4

�2 5.719 6.028 6.045 5.849 5.530 5.385

�3 55.00 61.19 61.55 57.38 50.81 47.92

h0 2.745 2.641 2.518 2.385 2.252 2.201

h1 9.355 8.798 7.890 6.831 5.789 5.400

✓1 1.537 1.490 1.453 1.427 1.411 1.407

✓2 �0.8158 �0.7883 �0.7755 �0.7751 �0.7833 �0.7879

✓3 �0.9829 �1.066 �1.089 �1.063 �1.004 �0.9742

⌘ 0.1510 0.1529 0.1537 0.1531 0.1514 0.1505

⌘� 0.1366 0.1687 0.2073 0.2499 0.2936 0.3108

Xf 1.62 2 3 4 6 8

�1 �7.622 10�4 4.135 10�2 0.1443 0.2316 0.3602 0.4448

�2 5.375 5.472 5.604 5.562 5.185 4.701

�3 47.83 43.65 32.95 23.64 11.05 4.560

h0 2.198 2.157 2.037 1.915 1.703 1.538

h1 5.388 4.863 3.635 2.694 1.537 0.9481

✓1 1.277 1.229 1.134 1.077 1.024 1.004

✓2 �0.7776 �0.7742 �0.7794 �0.7962 �0.8345 �0.8649

✓3 �0.8944 �0.9581 �1.101 �1.196 �1.287 �1.311

⌘ 0.1508 0.1314 9.347 10�2 6.939 10�2 4.341 10�2 3.073 10�2

⌘� 0.3106 0.3721 0.5057 0.6024 0.7223 0.7894

TABLE VIII: Case d = 3 and various Xf , polynomial expansion of h(�) around the non-trivial (left

panel) or trivial (right panel) minimum for both the potential and the Yukawa function, with Nh = 8

and Nv = 9 in the LPA0.

amplitudes, that is by allowing for higher polynomial couplings.

Once we turn to the dependence of the results on Xf , which is shown in Tab. VIII and

Tab. IX, it becomes visible how the di↵erence between the LPA and the LPA0 can be negligible

only for unphysical very small values of Xf . For ✓1, it is the 7% at Xf = 0.3, and the 14%

Xf 0.3 0.6 0.9 1.2 1.5 1.62

 2.377 10�2 1.793 10�2 1.253 10�2 7.315 10�3 2.169 10�3 1.125 10�4

�2 5.719 6.028 6.045 5.849 5.530 5.384

�3 55.00 61.19 61.55 57.37 50.79 47.90

y1 17.51 15.62 13.67 11.85 10.26 9.690

y2 214.7 192.0 162.1 131.55 104.5 95.07

✓1 1.537 1.490 1.453 1.427 1.411 1.407

✓2 �0.8152 �0.7882 �0.7755 �0.7751 �0.7831 �0.7877

✓3 �0.9833 �1.066 �1.088 �1.062 �1.003 �0.9727

⌘ 0.1510 0.1529 0.1537 0.1531 0.1514 0.1505

⌘� 0.1366 0.1687 0.2073 0.2499 0.2936 0.3108

Xf 1.62 2 3 4 6 8

�1 �7.366 10�4 4.137 10�2 0.1443 0.2316 0.3602 0.4448

�2 5.374 5.471 5.604 5.562 5.185 4.701

�3 47.81 43.63 32.95 23.64 11.05 4.560

y1 9.667 9.304 8.296 7.338 5.804 4.733

y2 94.77 83.91 59.23 41.28 20.95 11.67

✓1 1.277 1.229 1.134 1.077 1.024 1.004

✓2 �0.7775 �0.7742 �0.7794 �0.7962 �0.8345 �0.8649

✓3 �0.8935 �0.9578 �1.101 �1.196 �1.287 �1.311

⌘ 0.1508 0.1314 9.347 10�2 6.939 10�2 4.341 10�2 3.073 10�2

⌘� 0.3106 0.3721 0.5057 0.6024 0.7223 0.7894

TABLE IX: Case d = 3 and various Xf , polynomial expansion of y(⇢) around the non-trivial (left panel)

or trivial (right panel) minimum for both the potential and the Yukawa function, with Nh = 8 and Nv = 9

in the LPA0.
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Strong improvement comparing to results obtained with a smaller truncation with fixed h(�) = h1�
<latexit sha1_base64="/KS22CHNLCGPr37JSKcTYi85RnA=">AAAB+HicbZDNSsNAFIVv/K31L+rSzWAR6qYkIqgLoejGZQVjC20Ik+m0GTqZhJlJoYS+iRsXKm59FHe+jZM2C209MPBx7r3cOydMOVPacb6tldW19Y3NylZ1e2d3b98+OHxSSSYJ9UjCE9kJsaKcCepppjntpJLiOOS0HY7uinp7TKViiXjUk5T6MR4KNmAEa2MFth3Ve2nEzm6iwEUFBXbNaTgzoWVwS6hBqVZgf/X6CcliKjThWKmu66Taz7HUjHA6rfYyRVNMRnhIuwYFjqny89nlU3RqnD4aJNI8odHM/T2R41ipSRyazhjrSC3WCvO/WjfTgys/ZyLNNBVkvmiQcaQTVMSA+kxSovnEACaSmVsRibDERJuwqiYEd/HLy+CdN64b7sNFrXlbplGBYziBOrhwCU24hxZ4QGAMz/AKb1ZuvVjv1se8dcUqZ47gj6zPH2R7kmc=</latexit><latexit sha1_base64="/KS22CHNLCGPr37JSKcTYi85RnA=">AAAB+HicbZDNSsNAFIVv/K31L+rSzWAR6qYkIqgLoejGZQVjC20Ik+m0GTqZhJlJoYS+iRsXKm59FHe+jZM2C209MPBx7r3cOydMOVPacb6tldW19Y3NylZ1e2d3b98+OHxSSSYJ9UjCE9kJsaKcCepppjntpJLiOOS0HY7uinp7TKViiXjUk5T6MR4KNmAEa2MFth3Ve2nEzm6iwEUFBXbNaTgzoWVwS6hBqVZgf/X6CcliKjThWKmu66Taz7HUjHA6rfYyRVNMRnhIuwYFjqny89nlU3RqnD4aJNI8odHM/T2R41ipSRyazhjrSC3WCvO/WjfTgys/ZyLNNBVkvmiQcaQTVMSA+kxSovnEACaSmVsRibDERJuwqiYEd/HLy+CdN64b7sNFrXlbplGBYziBOrhwCU24hxZ4QGAMz/AKb1ZuvVjv1se8dcUqZ47gj6zPH2R7kmc=</latexit><latexit sha1_base64="/KS22CHNLCGPr37JSKcTYi85RnA=">AAAB+HicbZDNSsNAFIVv/K31L+rSzWAR6qYkIqgLoejGZQVjC20Ik+m0GTqZhJlJoYS+iRsXKm59FHe+jZM2C209MPBx7r3cOydMOVPacb6tldW19Y3NylZ1e2d3b98+OHxSSSYJ9UjCE9kJsaKcCepppjntpJLiOOS0HY7uinp7TKViiXjUk5T6MR4KNmAEa2MFth3Ve2nEzm6iwEUFBXbNaTgzoWVwS6hBqVZgf/X6CcliKjThWKmu66Taz7HUjHA6rfYyRVNMRnhIuwYFjqny89nlU3RqnD4aJNI8odHM/T2R41ipSRyazhjrSC3WCvO/WjfTgys/ZyLNNBVkvmiQcaQTVMSA+kxSovnEACaSmVsRibDERJuwqiYEd/HLy+CdN64b7sNFrXlbplGBYziBOrhwCU24hxZ4QGAMz/AKb1ZuvVjv1se8dcUqZ47gj6zPH2R7kmc=</latexit><latexit sha1_base64="/KS22CHNLCGPr37JSKcTYi85RnA=">AAAB+HicbZDNSsNAFIVv/K31L+rSzWAR6qYkIqgLoejGZQVjC20Ik+m0GTqZhJlJoYS+iRsXKm59FHe+jZM2C209MPBx7r3cOydMOVPacb6tldW19Y3NylZ1e2d3b98+OHxSSSYJ9UjCE9kJsaKcCepppjntpJLiOOS0HY7uinp7TKViiXjUk5T6MR4KNmAEa2MFth3Ve2nEzm6iwEUFBXbNaTgzoWVwS6hBqVZgf/X6CcliKjThWKmu66Taz7HUjHA6rfYyRVNMRnhIuwYFjqny89nlU3RqnD4aJNI8odHM/T2R41ipSRyazhjrSC3WCvO/WjfTgys/ZyLNNBVkvmiQcaQTVMSA+kxSovnEACaSmVsRibDERJuwqiYEd/HLy+CdN64b7sNFrXlbplGBYziBOrhwCU24hxZ4QGAMz/AKb1ZuvVjv1se8dcUqZ47gj6zPH2R7kmc=</latexit>

Moving to            and            not so useful,  
probably needed 4 derivative expansion or momentum dependent vertex expansion.    

Z�(�)
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Effective average Hamiltonian action
One can study the quantum/statistical field theory in phase space.

4

Hamiltonian formulation for theories with Dirac fermions.
In the conclusions the reader will find a discussion about the physical motivations for

the introduction of this formalism, as well as a proposal of some possible developments,
extensions and future applications of this method. Several appendices follow, where some
technical issues are described in more details.

2 The effective Hamiltonian action in quantum mechanics

In this section we shall work within quantum mechanics (QM), i.e. a 0+1 dimensional
quantum field theory (QFT). As an example we will quantize a classical system with one
bosonic degree of freedom governed by the following Hamiltonian action:

S[p, q] =

∫

dt
[

p(t)∂tq(t)−H (p(t), q(t))
]

(1)

where the (bare) Hamiltonian can have an arbitrary dependence in the momenta, departing
therefore from the usual quadratic form

H(p, q) =
1

2
p2 + V (q) . (2)

Here and in the following p and q denote canonically conjugate variables. The quantization
of such a system is performed via the following phase-space path integral:

e
i
!
W [I,J ] =

∫

[dpdq]µ[p, q]e
i
!
{S[p,q]+I·p+J ·q} (3)

where the dots stand for ordinary integrations. The functional measure on the physical
phase space is usually assumed to be µ[p, q] = Det 1

2π! .Also one can easily extend all the
formalism to an euclidean description. Since we want to keep our discussion as general as
possible we will not specify the precise space of functions on which the functional integral
is defined.

It is possible to study the system by a functional which may be called the quantum
effective Hamiltonian action, which is a trivial generalization of the more widely known
effective Lagrangian action. The latter ΓL is defined by introducing in the configuration-
space path integral external sources J coupled to the Lagrangian variables, and by taking
the Legendre transform of the generating functional of the connected green’s functions
W [J ] with respect to (w.r.t.) J . Similarly, in order to define the effective Hamiltonian
action ΓH , one starts from the phase-space path integral (3) and performs a Legendre
transform:

ΓH [p̄, q̄] = ext
I,J

(W [I, J ]− I · p̄− J · q̄) , (4)

where

p̄ =
δW

δI
, q̄ =

δW

δJ
.

The introduction of such a functional is not a novelty, as we have discussed in the intro-
duction. There are several ways to convince ourselves that from this functional one can
get every information about the quantum system.
First, by taking functional derivatives w.r.t. q̄(t) and p̄(t) one immediately gets

I = −
δΓH

δp̄
, J = −

δΓH

δq̄
. (5)
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For zero sources one has the equations for the vacuum configuration (q̄, p̄). They appear as
the classical equations of motion obtained from the quantum effective Hamiltonian action.
Second, ΓH satisfies the following integro-differential equation

e
i
!
ΓH [p̄,q̄] =

∫

[dpdq]µ[p, q]e
i
!

{

S[p,q]−(q−q̄)· δΓ
H

δq̄
−(p−p̄)· δΓ

H

δp̄

}

. (6)

This is a central identity and it could also be promoted to the definition of ΓH .
Third, from this equation one can get a different proof that the classical equations satisfied
by the effective Hamiltonian action encode the full quantum dynamics, because they are
equivalent to the Hamiltonian Dyson-Schwinger equations. In fact, the identities:

0 =

∫

[dpdq]
δ

δp

(

µ[p, q]e
i
!

{

S[p,q]−(q−q̄)· δΓ
H

δq̄
−(p−p̄)· δΓ

H

δp̄

})

=

∫

[dpdq]
δ

δq

(

µ[p, q]e
i
!

{

S[p,q]−(q−q̄)· δΓ
H

δq̄
−(p−p̄)· δΓ

H

δp̄

})

lead to:

⟨−i!
δ

δp
log µ[p, q] +

δS

δp
⟩ =

δΓH

δp̄
, ⟨−i!

δ

δq
log µ[p, q] +

δS

δq
⟩ =

δΓH

δq̄
.

Forth, just like for the effective action, the effective Hamiltonian action has a similar
interpretation as the generator of the one-particle-irreducible (1PI) proper vertices. For
more details and a proof of this statement see Appendix A.
Fifth, by evaluating the effective Hamiltonian action on its stationarity p̄ values one gets
the effective Lagrangian action. In fact, defining

ΓL[q̄] = ext
p̄

ΓH [p̄, q̄]

and calling p̄q̄ the extremal point, it is straightforward to show that

I = −
δΓH

δp̄
[p̄q̄, q̄] = 0 , J = −

δΓH

δq̄
[p̄q̄, q̄] = −

δΓL

δq̄
[q̄] .

Therefore ΓL[q̄] = W
[

0,− δΓL

δq̄

]

+ q̄ · δΓL

δq̄ , wherefrom we learn that ΓL satisfies the integro-

differential equation:

e
i
!
ΓL[q̄] =

∫

[dpdq]µ[p, q]e
i
!

{

S[p,q]−(q−q̄)· δΓ
L

δq̄

}

which is a generalization of the usual configuration space integro-differential equation
satisfied by the effective action, since it does not require S to be quadratic in the momenta.
Due to this simple relation between the two effective actions, from here on and for the
rest of this paper we will use the same letter Γ for both, dropping the subscripts, since the
reader will be able to distinguish them by their arguments (p̄,q̄ for the Hamiltonian one
and q̄ only for the Lagrangian one).
Sixth, the effective Hamiltonian action can be defined from the operatorial representation
by means of a time-dependent variational principle, in a way which is the direct general-
ization of the usual construction in configuration space [26]. Let Ĥ be the Hamiltonian
operator of the quantum system, |0⟩ be its time-independent ground state and let the
boundary conditions of the path integral in (3) be chosen such that

e
i
!
W [I,J ] = ⟨0|ÛI,J (+∞,−∞)|0⟩ = ⟨0|T exp

{

−

i

!

∫ +∞

−∞
dt
[

Ĥ − J(t)q̂ − I(t)p̂
]
}

|0⟩ . (7)

Wilsonian renormalization group for the action written in terms of the Hamiltonian. 
Define an effective Hamiltonian flow. The coarse-graining is in the full phase space.

Perturbative techniques are easily extended.

G.P.V., Zambelli    Phys. Rev. D86 (2012) 085041
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as a mathematical parameter unrelated to a physical sounding coarse-graining procedure,
and, in the presence of the physical UV cutoff Λ, taking the limit k →∞. Sticking to this
framework we introduce such a parameter, by means of a modification of the bare action
and of the functional measure

eiWk[I,J ] =

∫

[dpdq]µk[p, q]e
i{S[p,q]+∆Sk[p,q]+I·p+J ·q} (20)

and ask for µk exp{i∆Sk} to become µ as k → 0 and to provide a rising delta functional
as k → Λ. As traditional, to keep the framework as simple as possible, we choose ∆Sk to
be quadratic in the fields

∆Sk[p, q] =
1

2
(p, q) ·Rk · (p, q)T (21)

such that we need Rk → 0 and µk → µ when k → 0, as well as Rk → ∞ and µk →
(

DetRk
2π

) 1
2
when k → Λ. These constraints can be satisfied by several choices for the

symmetric matrix Rk and for the measure µk. In this paper we will consider only two
simple cases in which the only non-vanishing entries of Rk are either off-diagonal and built
out of an odd differential operator or diagonal and built out of even differential operators.
These respectively read

Rk(t, t
′) =

(

0 rk(−∂t
2)∂tδ(t− t′)

−rk(−∂t
2)∂tδ(t− t′) 0

)

(22)

Rk(t, t
′) =

(

Rp
k(−∂t

2)δ(t − t′) 0
0 Rq

k(−∂t
2)δ(t − t′)

)

(23)

The first choice can be interpreted as a k-dependent deformation of the symplectic po-
tential λ = pdq, by means of an operator (1 + rk) which, after the pull-back by a section
defining the specific path, might become a differential operator. This interpretation sug-
gests the appropriate k-dependent deformation of the functional measure: if the new
symplectic potential is λk = p(1 + rk)dq, the new non-trivial Liouville measure would

become µk =
(

Detσk2π
) 1

2 , where σk = dλk is the regularized symplectic form. This choice
for the measure indeed provides the correct normalization of the Gaussian rising delta
functional [14]. Following this line of thought we can guess a convenient choice for the
regularized measure also in the second case of a diagonal regulator. The straightforward
adaptation of the previous argument is insisting in adding to the fundamental symplectic
matrix our regulator matrix, and then taking its determinant. To summarize, the regular-
ized functional measures we will use together with the regulators (22) and (23) respectively
are

µk =

[

Det
1

2π

(

0
(

1 + rk(−∂t
2)
)

∂tδ(t − t′)
−

(

1 + rk(−∂t
2)
)

∂tδ(t − t′) 0

)] 1
2

(24)

µk =

[

Det
1

2π

(

Rp
k(−∂t

2)δ(t − t′) ∂tδ(t − t′)
−∂tδ(t− t′) Rq

k(−∂t
2)δ(t − t′)

)] 1
2

. (25)

The definition of the average effective Hamiltonian action (AEHA) Γk[p̄, q̄] is

Γk [p̄, q̄] + ∆Sk [p̄, q̄] = ext
I,J

(Wk[I, J ] − I · p̄− J · q̄) .
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Note that the sources minimizing the r.h.s. will in general depend on k. Again it is easy
to write an integro-differential equation for the AEHA:

eiΓk[p̄,q̄] =

∫

[dpdq]µk[p, q]e
i
{

S[p,q]+∆Sk[p−p̄,q−q̄]−(p−p̄)
δΓk
δp̄
−(q−q̄)

δΓk
δq̄

}

. (26)

When k → 0 eq. (26) trivially reduces to eq. (6) and the AEHA becomes the full effective
Hamiltonian action. It is not hard to check that when k → Λ the r.h.s. of eq. (26) reduces
to exp{iS[p̄, q̄]} and the AEHA coincides with the bare Hamiltonian action. A sketch of
the proof can be found in Appendix C.

The relation between the average effective Hamiltonian and Lagrangian actions is the
same as for the full effective actions:

Γk[q̄] = ext
p̄

Γk[p̄, q̄] . (27)

We observe that this is evident in the simplest possible case, i.e. when the bare action
is quadratic in the momenta, as in (2), since ∂2H

∂p2 and ∂2H
∂p∂q are constant (the latter is

actually zero). Indeed the integration over p in (26) can be performed exactly and in such
a case one discovers that also the AEHA must be quadratic in the momenta and that for
any k the canonical momentum that extremizes it is p̄ = ∂tq̄. As a result, plugging this
field configuration in (26), using the definition (27) and integrating out the momenta, one
obtains

eiΓk[q̄] =

∫

[dq]µk[q]e
i
{

S[q]+∆Sk[q−q̄]−(q−q̄)
δΓk
δq̄

}

(28)

where now µk[q] ≡
∫

[dp]µk[p, q]e
−i p

2

2 and ∆Sk[q] arises from the chosen ∆Sk[p, q]. For
example, if one adopts the scheme of eqs. (22) and (24) then

µk[q] =

[

Det
1

2π

(

1 + rk(−∂t
2)
)2

(−∂t
2)δ

] 1
2

∆Sk[q] =
1

2
∂tq · (r2k + 2rk)∂tq .

As usual, the k → Λ limit of the average effective Lagrangian action coincides with the
bare Lagrangian action while the k → Λ limit gives the full quantum effective Lagrangian
action.

In this work we are interested in the cases which depart from such a simple situation.

2.2 RG flow equation for the AEHA

In this section we discuss the translation of the functional integro-differential equation (26)
in a functional differential equation describing a flow parameterized by k.

Denoting by “.” the operation k∂k, and acting with it on eq. (26) one obtains

iΓ̇k =
µ̇k

µk
+ i⟨∆̇Sk[p− p̄, q − q̄]⟩k .

Since ∆Sk has been chosen quadratic in the fields, the expectation value can be rewritten
by means of the k-dependent version of formulae (12,13). Denoting Γ̃k [p̄, q̄] ≡ Γk [p̄, q̄] +
∆Sk [p̄, q̄], these read

i⟨T
(

(q−q̄)t′(q−q̄)t (p−p̄)t′(q−q̄)t
(q−q̄)t′(p−p̄)t (p−p̄)t′(p−p̄)t

)

⟩k = W (2)
k tt′

[I, J ] =

(
δ2Wk
δJt′δJt

δ2Wk
δIt′δJt

δ2Wk
δJt′δIt

δ2Wk
δIt′δIt

)

=

=

(
δq̄t
δJt′

δq̄t
δIt′

δp̄t
δJt′

δp̄t
δIt′

)

=

(
δJ
δq̄

δJ
δp̄

δI
δq̄

δI
δp̄

)−1

tt′

= −

(
δ2Γ̃k
δq̄δq̄

δ2Γ̃k
δp̄δq̄

δ2Γ̃k
δq̄δp̄

δ2Γ̃k
δp̄δp̄

)−1

tt′

= −
(

Γ̃(2)
k [p̄, q̄]

)−1

tt′
.
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as a mathematical parameter unrelated to a physical sounding coarse-graining procedure,
and, in the presence of the physical UV cutoff Λ, taking the limit k →∞. Sticking to this
framework we introduce such a parameter, by means of a modification of the bare action
and of the functional measure

eiWk[I,J ] =

∫

[dpdq]µk[p, q]e
i{S[p,q]+∆Sk[p,q]+I·p+J ·q} (20)

and ask for µk exp{i∆Sk} to become µ as k → 0 and to provide a rising delta functional
as k → Λ. As traditional, to keep the framework as simple as possible, we choose ∆Sk to
be quadratic in the fields

∆Sk[p, q] =
1

2
(p, q) ·Rk · (p, q)T (21)

such that we need Rk → 0 and µk → µ when k → 0, as well as Rk → ∞ and µk →
(

DetRk
2π

) 1
2
when k → Λ. These constraints can be satisfied by several choices for the

symmetric matrix Rk and for the measure µk. In this paper we will consider only two
simple cases in which the only non-vanishing entries of Rk are either off-diagonal and built
out of an odd differential operator or diagonal and built out of even differential operators.
These respectively read

Rk(t, t
′) =

(

0 rk(−∂t
2)∂tδ(t− t′)

−rk(−∂t
2)∂tδ(t− t′) 0

)

(22)

Rk(t, t
′) =

(

Rp
k(−∂t

2)δ(t − t′) 0
0 Rq

k(−∂t
2)δ(t − t′)

)

(23)

The first choice can be interpreted as a k-dependent deformation of the symplectic po-
tential λ = pdq, by means of an operator (1 + rk) which, after the pull-back by a section
defining the specific path, might become a differential operator. This interpretation sug-
gests the appropriate k-dependent deformation of the functional measure: if the new
symplectic potential is λk = p(1 + rk)dq, the new non-trivial Liouville measure would

become µk =
(

Detσk2π
) 1

2 , where σk = dλk is the regularized symplectic form. This choice
for the measure indeed provides the correct normalization of the Gaussian rising delta
functional [14]. Following this line of thought we can guess a convenient choice for the
regularized measure also in the second case of a diagonal regulator. The straightforward
adaptation of the previous argument is insisting in adding to the fundamental symplectic
matrix our regulator matrix, and then taking its determinant. To summarize, the regular-
ized functional measures we will use together with the regulators (22) and (23) respectively
are

µk =

[

Det
1

2π

(

0
(

1 + rk(−∂t
2)
)

∂tδ(t − t′)
−

(

1 + rk(−∂t
2)
)

∂tδ(t − t′) 0

)] 1
2

(24)

µk =

[

Det
1

2π

(

Rp
k(−∂t

2)δ(t − t′) ∂tδ(t − t′)
−∂tδ(t− t′) Rq

k(−∂t
2)δ(t − t′)

)] 1
2

. (25)

The definition of the average effective Hamiltonian action (AEHA) Γk[p̄, q̄] is

Γk [p̄, q̄] + ∆Sk [p̄, q̄] = ext
I,J

(Wk[I, J ] − I · p̄− J · q̄) .
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Det
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2π

(
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2)δ(t − t′) ∂tδ(t − t′)
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. (25)

The definition of the average effective Hamiltonian action (AEHA) Γk[p̄, q̄] is

Γk [p̄, q̄] + ∆Sk [p̄, q̄] = ext
I,J
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(q, p)
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approximation (LHA), i.e. the case in which the flow equation for the truncation Γk =
∫

dt (p̄∂tq̄ −Hk(p̄, q̄)) is evaluated on constant q̄ and p̄ configurations. For this choice, if
the second derivatives of Γk commute with each other as in the present case where they
are 1-by-1 bosonic matrices, the operators in the trace can be simplified and one obtains

− i

∫

dt Ḣk(p̄, q̄) = − Tr

[
(

ṙk
1 + rk

δ

)
detH(2)

k (p̄, q̄)

−∂2(1 + rk)2δ − detH(2)
k (p̄, q̄)

]

+ Tr

⎡

⎣
(ṙk∂δ)

δ2Hk
δp̄δq̄ (p̄, q̄)

−∂2(1 + rk)2δ − detH(2)
k (p̄, q̄)

⎤

⎦ (33)

where detH(2)
k = ∂2q̄q̄Hk ∂2p̄p̄Hk − (∂2q̄p̄Hk)2 is the determinant of the Hessian matrix of Hk.

Notice that the second trace vanishes whenever it is possible to evaluate it in Fourier space
and when the domain in such space is symmetric around the origin. If this is the case we
are left with

i

∫

dt Ḣk(p̄, q̄) =
1

2
Tr

[

Ṗk

Pk
δ

detH(2)
k (p̄, q̄)

Pkδ − detH(2)
k (p̄, q̄)

]

. (34)

Here one could adopt any of the regulators Rk developed in the vast literature about the
average effective Lagrangian action [11, 27], and plug it in the last formula by Pk(−∂t

2) =
−∂t

2 +Rk(−∂t
2) . One of the simplest choices for the regulator is a constant rk, that is

to say an operator which is multiplicative in both time and frequency representations; in
other words a function of k and Λ only. If no UV cutoff is present, this choice is possible
only in quantum mechanics, because it does not produce any coarse graining and therefore
it does not regularize the functional traces. Assuming ṙk > 0, ∀k ∈ (0,Λ), one can trade
k for the dimensionless parameter rk. Thus, in LHA and if the second derivatives of Hk

commute with each other, assuming that the traces can be written as
∫

dt
∫
dE
2π (after Fourier

transform), and that there is no UV cutoff in the theory, then by Wick rotating the trace
(E → iE) one gets

dHr

dr
= −

1

2(1 + r)2

(

detH(2)
r

) 1
2
. (35)

A different choice which makes the computation of the traces even simpler than for a
constant rk is the square root of the Litim regulator [27]. Denoting by rk(E2)E the Fourier
transform of rk(−∂t

2)i∂t, and with θ the Heaviside step function, after Wick rotation such
a regulator reads

rk(E
2)E = −(k + E)θ(k + E)θ(−E) + (k − E)θ(k − E)θ(E) .

In the LHA and if the second derivatives of Hk commute with each other, this gives the
same result as (34) for Pk(E2) = k2θ(k2 − E2) + E2θ(E2

− k2) , that is

Ḣk = −
k

π

detH(2)
k

k2 + detH(2)
k

. (36)

Of course if one considers Hk(p̄, q̄) = Tk(p̄) + Vk(q̄) as an initial condition for the flow,
whenever both Tk and Vk are polynomials of degree higher than two, the determinant
becomes a function of both q̄ and p̄ so that the flow generates also mixed p̄ and q̄ dependence
in the effective Hamiltonian. Therefore one should consider a larger truncation in order to
track such terms. Also a structure of a σ-model kind, quadratic in the momenta, generates
a dependence in the momenta which is more than quadratic. We stress that in general

One can study the spectrum of the quantum mechanical models non quadratic in the momenta,  
which have a non reducible path integral.
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ṙk
1 + rk

δ

)
detH(2)

k (p̄, q̄)

−∂2(1 + rk)2δ − detH(2)
k (p̄, q̄)

]

+ Tr

⎡

⎣
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Here one could adopt any of the regulators Rk developed in the vast literature about the
average effective Lagrangian action [11, 27], and plug it in the last formula by Pk(−∂t

2) =
−∂t

2 +Rk(−∂t
2) . One of the simplest choices for the regulator is a constant rk, that is

to say an operator which is multiplicative in both time and frequency representations; in
other words a function of k and Λ only. If no UV cutoff is present, this choice is possible
only in quantum mechanics, because it does not produce any coarse graining and therefore
it does not regularize the functional traces. Assuming ṙk > 0, ∀k ∈ (0,Λ), one can trade
k for the dimensionless parameter rk. Thus, in LHA and if the second derivatives of Hk

commute with each other, assuming that the traces can be written as
∫

dt
∫
dE
2π (after Fourier

transform), and that there is no UV cutoff in the theory, then by Wick rotating the trace
(E → iE) one gets

dHr

dr
= −

1

2(1 + r)2

(

detH(2)
r

) 1
2
. (35)

A different choice which makes the computation of the traces even simpler than for a
constant rk is the square root of the Litim regulator [27]. Denoting by rk(E2)E the Fourier
transform of rk(−∂t

2)i∂t, and with θ the Heaviside step function, after Wick rotation such
a regulator reads

rk(E
2)E = −(k + E)θ(k + E)θ(−E) + (k − E)θ(k − E)θ(E) .

In the LHA and if the second derivatives of Hk commute with each other, this gives the
same result as (34) for Pk(E2) = k2θ(k2 − E2) + E2θ(E2

− k2) , that is

Ḣk = −
k

π

detH(2)
k

k2 + detH(2)
k

. (36)

Of course if one considers Hk(p̄, q̄) = Tk(p̄) + Vk(q̄) as an initial condition for the flow,
whenever both Tk and Vk are polynomials of degree higher than two, the determinant
becomes a function of both q̄ and p̄ so that the flow generates also mixed p̄ and q̄ dependence
in the effective Hamiltonian. Therefore one should consider a larger truncation in order to
track such terms. Also a structure of a σ-model kind, quadratic in the momenta, generates
a dependence in the momenta which is more than quadratic. We stress that in general

Local Hamiltonian approximation  (constant          ) 
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The function OW in the right hand side of eq. (40) is called the Weyl symbol of Ô, and it
can be considered as the classical counterpart of Ô. There are many ways to compute this
function; one is to Weyl-order Ô and then to replace the operators in ÔW with c-numbers.
Another way is through the relation

OW (p, q) =

∫

dx eipx⟨q −
x

2
|Ô(p̂, q̂)|q + x

2
⟩ (41)

where the bra’s and ket’s are again eigenstates of the q̂ operator. For instance, considering
the models in Eq. (37), in the n = 2 and n = 3 cases such symbols read

H2W (p, q) =

(
p2 + q2

2

)2

−

1

4
, H3W (p, q) =

(
p2 + q2

2

)3

−

5

4

(
p2 + q2

2

)

. (42)

Notice that both subtraction terms above, due to Weyl ordering, are proportional to !2,
but in natural units such a dependence disappears.

Inserting these initial conditions in the flow equation for the LHA one can compute the
full quantum effective Hamiltonian at k = 0. Such a task can be performed by numerically
integrating the flow equation. However, if one is interested in simple quantities as the first
two energy levels, this might be unnecessary: it could be enough to truncate the LHA to
a polynomial in z ≡ (p2 + q2)/2 of finite order. Indeed if the bare Hamiltonian depends
on p and q only through z, in the LHA approximation also Hk can be shown to respect
this symmetry, for suitable cutoff operators.

We started by studying these polynomial truncated flows as generated by equations (35)
and (36) finding that singularities appear at nonvanishing values of k. This happens
because at some k the radius of convergence of the necessary expansion of the r.h.s. in
powers of z goes to zero, a fact related to the vanishing of the terms quadratic in the fields in
the bare Hamiltonian of the n = 2 model. If no expansion is performed, as in the numerical
integration of the flow equation for Hk, no singularity is met and the ground state and

gap can be estimated by the value of Hk and of (detH(2)
k )1/2 at the minimum. However

these estimates do not reach a great accuracy either because of spurious dependence on
the boundary conditions (which can be controlled by some nonlinear redefinitions of Hk)
or because of numerical errors: typically we reached no more than two digit accuracy
in the region around the minimum. In order to get stable predictions with a precision
better than 1% we turned to a different choice of regulators, curing the problem about the
polynomial expansion of the flow equation. Such a choice is that of a diagonal regulator,
as in eq. (31). We chose this regulator to be constant, i.e. Rp

k = Rq
k = R a multiplicative

operator (recall that we are assuming ω2 = 1 therefore even if Rp
k and Rq

k have different
dimensions we can set them equal if we assume their ratio to be some power of ω). We
also introduced a UV cutoff Λ in order to control the convergence of the flow for R→∞.
As a result we observed that, for such a constant regulator, Λ can be removed only after
the integration of the flow from R =∞ to R = 0. The resulting flow equation in the LHA
is

∂RḢR = −
1

π
arctan

(
Λ

R

)

+
2R+ ∂2p̄p̄HR + ∂2q̄q̄HR

2πDR
arctan

(
Λ

DR

)

(43)

where we defined

DR =
√

R2 +R
(

∂2p̄p̄HR + ∂2q̄q̄HR
)

+ detH(2)
R .

In this scheme good estimates for the ground state energy E0 and the energy gap ∆E1 =
E1−E0 can be obtained by simple polynomial truncations. For a bare Hamiltonian which
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|Ô(p̂, q̂)|q + x

2
⟩ (41)

where the bra’s and ket’s are again eigenstates of the q̂ operator. For instance, considering
the models in Eq. (37), in the n = 2 and n = 3 cases such symbols read

H2W (p, q) =

(
p2 + q2

2

)2

−

1

4
, H3W (p, q) =

(
p2 + q2

2

)3

−

5

4

(
p2 + q2

2

)

. (42)

Notice that both subtraction terms above, due to Weyl ordering, are proportional to !2,
but in natural units such a dependence disappears.

Inserting these initial conditions in the flow equation for the LHA one can compute the
full quantum effective Hamiltonian at k = 0. Such a task can be performed by numerically
integrating the flow equation. However, if one is interested in simple quantities as the first
two energy levels, this might be unnecessary: it could be enough to truncate the LHA to
a polynomial in z ≡ (p2 + q2)/2 of finite order. Indeed if the bare Hamiltonian depends
on p and q only through z, in the LHA approximation also Hk can be shown to respect
this symmetry, for suitable cutoff operators.

We started by studying these polynomial truncated flows as generated by equations (35)
and (36) finding that singularities appear at nonvanishing values of k. This happens
because at some k the radius of convergence of the necessary expansion of the r.h.s. in
powers of z goes to zero, a fact related to the vanishing of the terms quadratic in the fields in
the bare Hamiltonian of the n = 2 model. If no expansion is performed, as in the numerical
integration of the flow equation for Hk, no singularity is met and the ground state and

gap can be estimated by the value of Hk and of (detH(2)
k )1/2 at the minimum. However

these estimates do not reach a great accuracy either because of spurious dependence on
the boundary conditions (which can be controlled by some nonlinear redefinitions of Hk)
or because of numerical errors: typically we reached no more than two digit accuracy
in the region around the minimum. In order to get stable predictions with a precision
better than 1% we turned to a different choice of regulators, curing the problem about the
polynomial expansion of the flow equation. Such a choice is that of a diagonal regulator,
as in eq. (31). We chose this regulator to be constant, i.e. Rp

k = Rq
k = R a multiplicative

operator (recall that we are assuming ω2 = 1 therefore even if Rp
k and Rq

k have different
dimensions we can set them equal if we assume their ratio to be some power of ω). We
also introduced a UV cutoff Λ in order to control the convergence of the flow for R→∞.
As a result we observed that, for such a constant regulator, Λ can be removed only after
the integration of the flow from R =∞ to R = 0. The resulting flow equation in the LHA
is
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approximation (LHA), i.e. the case in which the flow equation for the truncation Γk =
∫

dt (p̄∂tq̄ −Hk(p̄, q̄)) is evaluated on constant q̄ and p̄ configurations. For this choice, if
the second derivatives of Γk commute with each other as in the present case where they
are 1-by-1 bosonic matrices, the operators in the trace can be simplified and one obtains

− i

∫

dt Ḣk(p̄, q̄) = − Tr

[
(

ṙk
1 + rk

δ

)
detH(2)

k (p̄, q̄)

−∂2(1 + rk)2δ − detH(2)
k (p̄, q̄)

]

+ Tr

⎡

⎣
(ṙk∂δ)

δ2Hk
δp̄δq̄ (p̄, q̄)

−∂2(1 + rk)2δ − detH(2)
k (p̄, q̄)

⎤

⎦ (33)

where detH(2)
k = ∂2q̄q̄Hk ∂2p̄p̄Hk − (∂2q̄p̄Hk)2 is the determinant of the Hessian matrix of Hk.

Notice that the second trace vanishes whenever it is possible to evaluate it in Fourier space
and when the domain in such space is symmetric around the origin. If this is the case we
are left with

i

∫

dt Ḣk(p̄, q̄) =
1

2
Tr

[

Ṗk

Pk
δ

detH(2)
k (p̄, q̄)

Pkδ − detH(2)
k (p̄, q̄)

]

. (34)

Here one could adopt any of the regulators Rk developed in the vast literature about the
average effective Lagrangian action [11, 27], and plug it in the last formula by Pk(−∂t

2) =
−∂t

2 +Rk(−∂t
2) . One of the simplest choices for the regulator is a constant rk, that is

to say an operator which is multiplicative in both time and frequency representations; in
other words a function of k and Λ only. If no UV cutoff is present, this choice is possible
only in quantum mechanics, because it does not produce any coarse graining and therefore
it does not regularize the functional traces. Assuming ṙk > 0, ∀k ∈ (0,Λ), one can trade
k for the dimensionless parameter rk. Thus, in LHA and if the second derivatives of Hk

commute with each other, assuming that the traces can be written as
∫

dt
∫
dE
2π (after Fourier

transform), and that there is no UV cutoff in the theory, then by Wick rotating the trace
(E → iE) one gets

dHr

dr
= −

1

2(1 + r)2

(

detH(2)
r

) 1
2
. (35)

A different choice which makes the computation of the traces even simpler than for a
constant rk is the square root of the Litim regulator [27]. Denoting by rk(E2)E the Fourier
transform of rk(−∂t

2)i∂t, and with θ the Heaviside step function, after Wick rotation such
a regulator reads

rk(E
2)E = −(k + E)θ(k + E)θ(−E) + (k − E)θ(k − E)θ(E) .

In the LHA and if the second derivatives of Hk commute with each other, this gives the
same result as (34) for Pk(E2) = k2θ(k2 − E2) + E2θ(E2

− k2) , that is

Ḣk = −
k

π

detH(2)
k

k2 + detH(2)
k

. (36)

Of course if one considers Hk(p̄, q̄) = Tk(p̄) + Vk(q̄) as an initial condition for the flow,
whenever both Tk and Vk are polynomials of degree higher than two, the determinant
becomes a function of both q̄ and p̄ so that the flow generates also mixed p̄ and q̄ dependence
in the effective Hamiltonian. Therefore one should consider a larger truncation in order to
track such terms. Also a structure of a σ-model kind, quadratic in the momenta, generates
a dependence in the momenta which is more than quadratic. We stress that in general
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the flow will generate also a dependence on time derivatives of q and p variables. This
goes beyond the LHA but it is still compatible with the standard Hamiltonian approach
as long as one starts the flow at the UV with a derivatives-free bare Hamiltonian.

2.3 Exercise: the ground state energy and gap of models that are more
than quadratic in the momenta

As an example of the application of the framework discussed in the previous subsections
to specific problems, we will present the computation of the first two energy levels of few
exactly solvable systems for which no simple Lagrangian description is available, due to to
the fact that the functional integral over the conjugate momenta is not Gaussian. This will
serve as a check of the soundness of the formalism, but the reader is invited to remember
that the very same simple computations explained in the following would work also for
much more complicated models. Let us recall that the functional RG has already been
successfully applied to the computation of the spectrum of quantum mechanical models
in the configuration space formulation [28, 29].

The systems we are going to address have the following classical Hamiltonian:

Hn(p, q) =

(
p2 + ω2q2

2

)n

. (37)

They are easy to solve due to the O(2) symmetry which forces the Hamiltonian to depend
only on the “action” and not on the “angle” coordinate in phase space. Even without
performing a canonical transformation to such coordinates, the energy spectrum can be
built by ladder operators. Rescaling the variables q = q′/

√

ω and p =
√

ωp′ as well as the
Hamiltonian H = ωnH ′ we can reduce the problem to the one with ω = 1, therefore in the
following we will restrict to such a case. The operator algebra of these quantum models is
completely described by

â =
q̂ + ip̂
√

2
, â† =

q̂ − ip̂
√

2
, ââ† − â†â = 1 . (38)

The Hamiltonian operator is just the n-th power of
(

N̂ + 1
2

)

where N̂ = â†â is the number

operator. This is enough to deduce the whole energy spectrum for any positive integer n.
In order to reproduce such a spectrum by means of the RG flow equation, the first

step is to specify the initial condition for the integration of the flow. From the discussion
of the previous subsections follows that the most suitable initial condition is Γk=Λ = S,
where S is the bare action to be inserted in a path integral, as the input specifying which
system is being studied. At this point it is necessary to recall that such a bare action is in
one-to-one correspondence with the Hamiltonian of the operator representation: the bare
Hamiltonian is just the Weyl symbol of the Hamiltonian operator. Let us remind that an
operator Ô(p̂, q̂), can always be written as a sum of symmetrized (in p̂ and q̂) operators

Ô = ÔS +
∑

i

ÔiS = ÔW (39)

which is what one calls the Weyl-ordered version of Ô. Also, its average on coordinate q̂
eigenstates with eigenvalues x and y is conveniently given by

⟨x|Ô|y⟩ =
∫

dp ⟨x|p⟩OW

(

p,
x+ y

2

)

⟨p|y⟩ . (40)

Hn(p, q) = p
n + a q

n
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To integrate the flow from the UV to the IR we need to specify the bare Hamiltonian at the UV scale. 
This is in 1-1 correspondence with Hamiltonian operator, being its Weyl symbol (i.e. Weyl ordered).
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The function OW in the right hand side of eq. (40) is called the Weyl symbol of Ô, and it
can be considered as the classical counterpart of Ô. There are many ways to compute this
function; one is to Weyl-order Ô and then to replace the operators in ÔW with c-numbers.
Another way is through the relation

OW (p, q) =

∫
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where the bra’s and ket’s are again eigenstates of the q̂ operator. For instance, considering
the models in Eq. (37), in the n = 2 and n = 3 cases such symbols read

H2W (p, q) =
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p2 + q2

2

)2

−

1

4
, H3W (p, q) =
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p2 + q2

2

)3

−

5

4

(
p2 + q2

2

)

. (42)

Notice that both subtraction terms above, due to Weyl ordering, are proportional to !2,
but in natural units such a dependence disappears.

Inserting these initial conditions in the flow equation for the LHA one can compute the
full quantum effective Hamiltonian at k = 0. Such a task can be performed by numerically
integrating the flow equation. However, if one is interested in simple quantities as the first
two energy levels, this might be unnecessary: it could be enough to truncate the LHA to
a polynomial in z ≡ (p2 + q2)/2 of finite order. Indeed if the bare Hamiltonian depends
on p and q only through z, in the LHA approximation also Hk can be shown to respect
this symmetry, for suitable cutoff operators.

We started by studying these polynomial truncated flows as generated by equations (35)
and (36) finding that singularities appear at nonvanishing values of k. This happens
because at some k the radius of convergence of the necessary expansion of the r.h.s. in
powers of z goes to zero, a fact related to the vanishing of the terms quadratic in the fields in
the bare Hamiltonian of the n = 2 model. If no expansion is performed, as in the numerical
integration of the flow equation for Hk, no singularity is met and the ground state and

gap can be estimated by the value of Hk and of (detH(2)
k )1/2 at the minimum. However

these estimates do not reach a great accuracy either because of spurious dependence on
the boundary conditions (which can be controlled by some nonlinear redefinitions of Hk)
or because of numerical errors: typically we reached no more than two digit accuracy
in the region around the minimum. In order to get stable predictions with a precision
better than 1% we turned to a different choice of regulators, curing the problem about the
polynomial expansion of the flow equation. Such a choice is that of a diagonal regulator,
as in eq. (31). We chose this regulator to be constant, i.e. Rp

k = Rq
k = R a multiplicative

operator (recall that we are assuming ω2 = 1 therefore even if Rp
k and Rq

k have different
dimensions we can set them equal if we assume their ratio to be some power of ω). We
also introduced a UV cutoff Λ in order to control the convergence of the flow for R→∞.
As a result we observed that, for such a constant regulator, Λ can be removed only after
the integration of the flow from R =∞ to R = 0. The resulting flow equation in the LHA
is

∂RḢR = −
1

π
arctan

(
Λ

R

)

+
2R+ ∂2p̄p̄HR + ∂2q̄q̄HR

2πDR
arctan

(
Λ

DR

)

(43)

where we defined

DR =
√

R2 +R
(

∂2p̄p̄HR + ∂2q̄q̄HR
)

+ detH(2)
R .

In this scheme good estimates for the ground state energy E0 and the energy gap ∆E1 =
E1−E0 can be obtained by simple polynomial truncations. For a bare Hamiltonian which
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The function OW in the right hand side of eq. (40) is called the Weyl symbol of Ô, and it
can be considered as the classical counterpart of Ô. There are many ways to compute this
function; one is to Weyl-order Ô and then to replace the operators in ÔW with c-numbers.
Another way is through the relation

OW (p, q) =

∫

dx eipx⟨q −
x

2
|Ô(p̂, q̂)|q + x

2
⟩ (41)

where the bra’s and ket’s are again eigenstates of the q̂ operator. For instance, considering
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(
p2 + q2

2

)2

−

1

4
, H3W (p, q) =

(
p2 + q2

2

)3
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5

4

(
p2 + q2

2

)

. (42)

Notice that both subtraction terms above, due to Weyl ordering, are proportional to !2,
but in natural units such a dependence disappears.

Inserting these initial conditions in the flow equation for the LHA one can compute the
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because at some k the radius of convergence of the necessary expansion of the r.h.s. in
powers of z goes to zero, a fact related to the vanishing of the terms quadratic in the fields in
the bare Hamiltonian of the n = 2 model. If no expansion is performed, as in the numerical
integration of the flow equation for Hk, no singularity is met and the ground state and

gap can be estimated by the value of Hk and of (detH(2)
k )1/2 at the minimum. However

these estimates do not reach a great accuracy either because of spurious dependence on
the boundary conditions (which can be controlled by some nonlinear redefinitions of Hk)
or because of numerical errors: typically we reached no more than two digit accuracy
in the region around the minimum. In order to get stable predictions with a precision
better than 1% we turned to a different choice of regulators, curing the problem about the
polynomial expansion of the flow equation. Such a choice is that of a diagonal regulator,
as in eq. (31). We chose this regulator to be constant, i.e. Rp

k = Rq
k = R a multiplicative

operator (recall that we are assuming ω2 = 1 therefore even if Rp
k and Rq

k have different
dimensions we can set them equal if we assume their ratio to be some power of ω). We
also introduced a UV cutoff Λ in order to control the convergence of the flow for R→∞.
As a result we observed that, for such a constant regulator, Λ can be removed only after
the integration of the flow from R =∞ to R = 0. The resulting flow equation in the LHA
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where we defined
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√

R2 +R
(

∂2p̄p̄HR + ∂2q̄q̄HR
)

+ detH(2)
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In this scheme good estimates for the ground state energy E0 and the energy gap ∆E1 =
E1−E0 can be obtained by simple polynomial truncations. For a bare Hamiltonian which

First example for

The Hamiltonian                                 has instead the same Weyl symbol 
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is a polynomial of order n we consider two cases: a truncation with a polynomial of the
same order n and another of order n + 1. In the latter case we add a suffix +1 to the
corresponding quantities E+1

0 and ∆E+1
1 . We give the results obtained by choosing as an

initial condition both the Weyl-ordered HnW and the Weyl-uncorrected Hamiltonian Hn:

Bare Hamiltonian Eexact
0 E0 E+1

0 ∆Eexact
1 ∆E1 ∆E+1

1

H2W 1/4 0.24936 0.24936 2 1.99871 1.99871
H2 1/2 0.49989 0.49994 2 1.99867 1.99985
H3W 1/8 0.12492 0.124886 13/4 3.24736 3.24905
H3 3/4 0.749849 0.74856 9/2 4.4991 4.4939

We note that the quantities E0 and ∆E1 depend on the local properties of the effective
Hamiltonian at the minimum (p̄ = q̄ = 0) and therefore can be extracted with a good
approximation adopting simple polynomial truncations. From the table we see that there
is no clear pattern on the change of the precision of the results when increasing the order
of the truncation. In the worst case we find a relative error of order 10−3. In order to
achieve a better accuracy, going to next-to-leading order in the derivative expansion would
probably do the job.

We remark that for the first time in the functional RG approach one faces the ordering
problem in the choice of the bare Hamiltonian function which corresponds to the initial
condition for the flow. This feature generally extends to QFT, therefore one needs to keep
it in mind before interpreting the results obtained by choosing an initial condition which
is non-separable in p and q.

2.4 The average effective Hamiltonian action in fermionic quantum me-
chanics

Since fermions usually have a first order dynamics, the Hamiltonian formulation of it is
identical to the Lagrangian one. Therefore the AEHA formalism in this case is identical
to the traditional Lagrangian approach. For completeness we will briefly review it in this
subsection.

Let’s consider as an example a free system whose Lagrangian variables are n real
Grassmann-valued functions of time:

{

θi(t)
}

i=1,...,n
, evolving according to the following

Lagrangian:

L(θ(t), ∂tθ(t)) =
1

2
θi(t)i∂tθ

j(t)δij − V (θi(t)) . (44)

Defining the momenta πi as the right partial derivatives of L with respect to ∂tθi we find
n second class primary constraints:

χi(t) = πi(t)−
i

2
δijθ

j(t) = 0 (45)

which cause the canonical Hamiltonian H = πi∂tθi − L = V (θi) to be independent of πi.
The relevant phase space is the surface S defined by (45), a complete set of independent
coordinates on it is given by θi and the functional integral is to be taken over all paths θi(t)
lying on this surface. In presence of second class constraints and assuming that the whole
phase space is endowed with a symplectic structure σ = dλ, we can define a nondegenerate
symplectic form σ̃ = d̃λ̃ on the reduced phase space, simply by restricting σ to S. As the
inverse of σ is the Poisson bracket [ , ], the inverse of σ̃ is the Dirac bracket [ , ]∼, which
in the reduced phase space coordinates θi has components: [θi, θj]∼ = −iδij = [χi,χj ] .
The kinetic term in (44) can be interpreted as the Legendre transform term on S, i.e. as

Similar agreement.

Weyl symbol

From numerical evolution one gets 
the effective Hamiltonian.  
Numerical error in the spectrum <0.1%

Diagonal cutoff schemes seem to work better.

Another example:
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Regge limit of strong interactions 
Pomeron-Odderon Reggeon Field Theory

The main physical motivation is the idea that QCD, in the high energy (Regge) limit and 
at large distances, can be described by an effective theory such as Reggeon Field Theory  
(RFT), with local fields and local interactions.

• BFKL physics: fundamental gluon (and quarks) organise themselves in 
composite fields (of reggeized gluons) giving as leading color singlet 
objects interacting Pomeron and Odderon,  

              BFKL Pomeron (        ), Odderon (        ) and both 

• Here we investigate some features of RFT in 2 transverse dimensions

• The onset of such a transition should involve mainly perturbative physics.

• This should be at the “UV” boundary of RFT, below which 
    (at larger distances) they may be considered approximately local 
    with           and a non zero       and described by Regge poles, as in old 
    S-matrix analysis of strong interactions intrinsically non perturbative.

• Possible transition from QCD to the RFT regime:

↵0 ' 0J ' 1J > 1

J ' 1 ↵0

s ! 1
<latexit sha1_base64="z64c+Naoi9SMqFQkVcpMQM5vaZg="></latexit><latexit sha1_base64="z64c+Naoi9SMqFQkVcpMQM5vaZg="></latexit><latexit sha1_base64="z64c+Naoi9SMqFQkVcpMQM5vaZg="></latexit><latexit sha1_base64="z64c+Naoi9SMqFQkVcpMQM5vaZg="></latexit>

t ' 0
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QCD in the Regge limit.
In early QCD times perturbative BFKL analysis found gluon reggeization, 
the Pomeron, as a composite state      of 2 reggeized gluons
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and later the Odderon (C,P odd), as a composite state     of 3 reggeized gluons, 
solution of the BKP equation in the lowest non trivial approximation. 

Simple exchanges of such objects are corrected by interactions in presence 
of more reggeized gluons in the t channel which are necessary to unitarize the theory.

Diagrams with reggeized gluons 
containing PPP and POO vertices: 
interactions are local in rapidity  
but non local in transverse space.

Similar objects are found in other approaches to the Regge limit of QCD: 
CGC, Dipole/Wilson lines.

RFT might appear at high energies (large rapidities) and large transverse distances.

E↵ective Field Theory with Pomerons and

Odderons

April 29, 2016

1 From QCD analysis

Investigations from QCD in the Regge limit in generalized LLA and also
in Dipole/CGC/Wilson line approaches (NLLA to be checked) have shown
that the evolution in the rapidity ⌧ for the C-even (pomeron exchange) am-
plitude N(x,y; ⌧) and the C-odd (odderon exchange) amplitude O(x,y; ⌧)
in the transverse position plane is given in the tree approximation by the
equations [1] (See also [2] but with wrong signs there!).

@N(x,y; ⌧)

@⌧
=
↵̄s

2⇡

Z
d
2
z

(x� y)2

(x� z)2(z � y)2
[N(x, z; ⌧) +N(z,y; ⌧)�N(x,y; ⌧)

�N(x, z; ⌧)N(z,y; ⌧) +O(x, z; ⌧)O(z,y; ⌧)] , (1)

@O(x,y; ⌧)

@⌧
=
↵̄s

2⇡

Z
d
2
z

(x� y)2

(x� z)2(z � y)2
[O(x, z; ⌧) +O(z,y; ⌧)�O(x,y; ⌧)

�O(x, z; ⌧)N(z,y; ⌧)�N(x, z; ⌧)O(z,y; ⌧)] , (2)

where the linear evolution is regulated by the BFKL kernel and the
non linear terms are associated to the triple pomeron, pomeron into two
odderons and the odderon into pomeron-odderon non local in transverse
space vertices. We can write them symbolically in a more compact form

@N

@⌧
= KN � VPPPNN + VPOOOO

@O

@⌧
= KO � VOPO(NO +ON) (3)

Here, at tree level, one hasN = Re
R
hT  †iX and O = Re

R
hT��†iY where

 and � are the pomeron and odderon fields respectively for suitable X and
Y . Therefore at lowest order N and O correspond to the reggeon propa-
gators integrated with the target impact factor. Note that physically the
Pomeron exchange amplitude receives negative contributions from splitting

1

 

�

Odderon recently in the news because of TOTEM measurements at LHC!

Lipatov et al.   (1977)

Bartels, Lipatov, G.P.V.   (2000)

Approx. evolution in rapidity



Strong interactions and old Regge theory
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About half a century ago V.N. Gribov introduced phenomenologically the RFT.

• The leading pole: even signatured Pomeron with vacuum quantum numbers, 
    trajectory

• Regge pole description in the complex                    plane

Starting point: Sommerfeld-Watson representation of the elastic scattering amplitudes.

•  Unitarity in the crossed (t-channel): multi pomeron states, branch-point singularities  
     (Regge cuts)
•  Analysis of experimental inclusive cross sections in the triple Regge region  
     showed that a triple Pomeron interaction should be introduced.
•  In the ’70 it was conjectured that another pole with odd quantum numbers (P,C,   ) 
     could exist, the so called Odderon with α(0) close to 1.
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Fig. 1. Graphical representation of a multi-Regge poles con-
tribution to the elastic scattering amplitude. The zigzag lines
represent pomerons

rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.

2 Reggeon unitarity, energy cuts à la AGK,
and particle-pomeron couplings
in γ∗γ∗ scattering

2.1 The non-perturbative AGK rules

In this section we briefly review the AGK strategy and its
application to pQCD. We will conclude that the central
task is the derivation and the study of the coupling of four
(or more) reggeized gluons to virtual photons.

The original AGK paper starts from a multi-Regge
pole contribution to the elastic scattering amplitude
(Fig. 1), written as a Sommerfeld–Watson representation:

TAB(s, t) =
∫

dω

2i
ξ(ω)s1+ωF(ω, t). (1)

with ω = J − 1,

ξ(ω) =
τ − e−iπω

sin πω
= i

e−i π
2 (ω+ 1−τ

2 )

cos
[ π

2

(

ω + 1−τ
2

)]

= i +
[

tan
π
2

(

ω +
1 − τ

2

)]

, (2)

and τ = ± 1 being the signature. The (real-valued) par-
tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):

disc(n)
ω [F(ω, t)]

= 2πi
∫

dΩn

n!
γ{βj} NA

n ({kj};ω) NB
n ({kj};ω)

×δ(ω − Σjβj), (3)

dΩn = (2π)2δ2(q − Σjkj)
n
∏

j=1

d2kj

(2π)2
,

where kj (j = 1, ..., n) denotes the transverse momentum
of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2

j ) = αj = 1 + βj is
the Regge pole trajectory function. The factor which de-
termines the overall sign has the form

γ{βj} = ℑ
[

− iΠj(iξj)
]

= (−1)n−1
cos
[

π
2
∑

j

(

βj + 1−τj

2

)]

∏

j cos
[

π
2

(

βj + 1−τj

2

)] . (4)

As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
∏n

1
(∫

dωjδ(ωj − βj)
)

δ
(

ω −
∑

j ωj

)

: in this case, the
vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle
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rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.

2 Reggeon unitarity, energy cuts à la AGK,
and particle-pomeron couplings
in γ∗γ∗ scattering

2.1 The non-perturbative AGK rules

In this section we briefly review the AGK strategy and its
application to pQCD. We will conclude that the central
task is the derivation and the study of the coupling of four
(or more) reggeized gluons to virtual photons.

The original AGK paper starts from a multi-Regge
pole contribution to the elastic scattering amplitude
(Fig. 1), written as a Sommerfeld–Watson representation:

TAB(s, t) =
∫

dω

2i
ξ(ω)s1+ωF(ω, t). (1)

with ω = J − 1,

ξ(ω) =
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and τ = ± 1 being the signature. The (real-valued) par-
tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):
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where kj (j = 1, ..., n) denotes the transverse momentum
of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2

j ) = αj = 1 + βj is
the Regge pole trajectory function. The factor which de-
termines the overall sign has the form

γ{βj} = ℑ
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As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
∏n

1
(∫

dωjδ(ωj − βj)
)

δ
(

ω −
∑

j ωj

)

: in this case, the
vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle

•  The Pomeron RFT was found to be in the same universality class 
     as directed percolation. 
     Non perturbative FRG analysis give good results! 
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rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.
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in γ∗γ∗ scattering

2.1 The non-perturbative AGK rules

In this section we briefly review the AGK strategy and its
application to pQCD. We will conclude that the central
task is the derivation and the study of the coupling of four
(or more) reggeized gluons to virtual photons.

The original AGK paper starts from a multi-Regge
pole contribution to the elastic scattering amplitude
(Fig. 1), written as a Sommerfeld–Watson representation:
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and τ = ± 1 being the signature. The (real-valued) par-
tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):
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where kj (j = 1, ..., n) denotes the transverse momentum
of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2

j ) = αj = 1 + βj is
the Regge pole trajectory function. The factor which de-
termines the overall sign has the form
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[
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As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
∏n

1
(∫

dωjδ(ωj − βj)
)

δ
(

ω −
∑

j ωj

)

: in this case, the
vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle
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rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.

2 Reggeon unitarity, energy cuts à la AGK,
and particle-pomeron couplings
in γ∗γ∗ scattering

2.1 The non-perturbative AGK rules

In this section we briefly review the AGK strategy and its
application to pQCD. We will conclude that the central
task is the derivation and the study of the coupling of four
(or more) reggeized gluons to virtual photons.

The original AGK paper starts from a multi-Regge
pole contribution to the elastic scattering amplitude
(Fig. 1), written as a Sommerfeld–Watson representation:
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and τ = ± 1 being the signature. The (real-valued) par-
tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):
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where kj (j = 1, ..., n) denotes the transverse momentum
of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2

j ) = αj = 1 + βj is
the Regge pole trajectory function. The factor which de-
termines the overall sign has the form
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As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
∏n

1
(∫

dωjδ(ωj − βj)
)

δ
(

ω −
∑

j ωj

)

: in this case, the
vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle
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rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.

2 Reggeon unitarity, energy cuts à la AGK,
and particle-pomeron couplings
in γ∗γ∗ scattering

2.1 The non-perturbative AGK rules

In this section we briefly review the AGK strategy and its
application to pQCD. We will conclude that the central
task is the derivation and the study of the coupling of four
(or more) reggeized gluons to virtual photons.

The original AGK paper starts from a multi-Regge
pole contribution to the elastic scattering amplitude
(Fig. 1), written as a Sommerfeld–Watson representation:
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and τ = ± 1 being the signature. The (real-valued) par-
tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):
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where kj (j = 1, ..., n) denotes the transverse momentum
of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2
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As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
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ω −
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: in this case, the
vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle
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• n Pomeron t-channel states induced by interactions gets a factor 

Interactions are constrained by signature: conservation 
Reggeons have different signature factors,  
multi reggeon cut has discontinuity with overall sign from
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It is important to note the di↵erences in the structure of the e↵ective potential compared

to the pure Pomeron case. As described in [1], for the pure Pomeron case the couplings are

real-valued for even powers of the Pomeron fields, whereas odd powers require imaginary

couplings. This is a consequence of the even-signature of the Pomeron exchange which

leads to special trigonometric factors in front of multi-pomeron cut contributions in the

t-channel unitarity equations: the n-Pomeron contribution comes with a factor (�1)n�1.

This means, in particular, that the two Pomeron cut contribution to the Pomeron self-

energy has a minus sign which is obtained by requiring the triple Pomeron coupling to be

purely imaginary.

For the Odderon the situation is di↵erent: the Odderon has negative signature. This

has several consequences. First, because of signature conservation, t-channel states with

an odd number of odderons never mix with pure Pomeron channels. Second, the transition

P ! OO is real valued: the two-Odderon cut is positive (in contrast to the two Pomeron

cut), and there is no need for an imaginary coupling. On the other hand, the transition

O ! OP has to be imaginary, since the Odderon-Pomeron cut carries a minus sign. As a

result, all triple couplings are imaginary, except for the real-valued transition P ! OO.

In the sector of quartic couplings, all couplings involving Pomerons only are real-valued.

Once the Odderon is included, again most quartic couplings ramain real, but there are two

exceptions: the transitions O ! OOO and P ! P +OO are imaginary. This can be easily

understood considering a contribution to such quartic vertices coming by the composition

– 3 –

Therefore the pomeron self energy is negative.  
The triple Pomeron coupling by convention is chosen imaginary. 
Quartic Pomeron couplings are real.

• Odderon has negative signature:
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to the pure Pomeron case. As described in [1], for the pure Pomeron case the couplings are

real-valued for even powers of the Pomeron fields, whereas odd powers require imaginary

couplings. This is a consequence of the even-signature of the Pomeron exchange which

leads to special trigonometric factors in front of multi-pomeron cut contributions in the

t-channel unitarity equations: the n-Pomeron contribution comes with a factor (�1)n�1.

This means, in particular, that the two Pomeron cut contribution to the Pomeron self-

energy has a minus sign which is obtained by requiring the triple Pomeron coupling to be

purely imaginary.

For the Odderon the situation is di↵erent: the Odderon has negative signature. This

has several consequences. First, because of signature conservation, t-channel states with

an odd number of odderons never mix with pure Pomeron channels. Second, the transition

P ! OO is real valued: the two-Odderon cut is positive (in contrast to the two Pomeron

cut), and there is no need for an imaginary coupling. On the other hand, the transition

O ! OP has to be imaginary, since the Odderon-Pomeron cut carries a minus sign. As a

result, all triple couplings are imaginary, except for the real-valued transition P ! OO.

In the sector of quartic couplings, all couplings involving Pomerons only are real-valued.

Once the Odderon is included, again most quartic couplings ramain real, but there are two

exceptions: the transitions O ! OOO and P ! P +OO are imaginary. This can be easily

understood considering a contribution to such quartic vertices coming by the composition
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It is important to note the di↵erences in the structure of the e↵ective potential compared

to the pure Pomeron case. As described in [1], for the pure Pomeron case the couplings are

real-valued for even powers of the Pomeron fields, whereas odd powers require imaginary

couplings. This is a consequence of the even-signature of the Pomeron exchange which

leads to special trigonometric factors in front of multi-pomeron cut contributions in the

t-channel unitarity equations: the n-Pomeron contribution comes with a factor (�1)n�1.

This means, in particular, that the two Pomeron cut contribution to the Pomeron self-

energy has a minus sign which is obtained by requiring the triple Pomeron coupling to be

purely imaginary.

For the Odderon the situation is di↵erent: the Odderon has negative signature. This

has several consequences. First, because of signature conservation, t-channel states with

an odd number of odderons never mix with pure Pomeron channels. Second, the transition

P ! OO is real valued: the two-Odderon cut is positive (in contrast to the two Pomeron

cut), and there is no need for an imaginary coupling. On the other hand, the transition

O ! OP has to be imaginary, since the Odderon-Pomeron cut carries a minus sign. As a

result, all triple couplings are imaginary, except for the real-valued transition P ! OO.

In the sector of quartic couplings, all couplings involving Pomerons only are real-valued.

Once the Odderon is included, again most quartic couplings ramain real, but there are two

exceptions: the transitions O ! OOO and P ! P +OO are imaginary. This can be easily

understood considering a contribution to such quartic vertices coming by the composition
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Pomeron:             (imaginary)        ,  Odderon:                 (real)

coupling when the corresponding operator (which must contain an even
number of odderon fields) can be written as ( †

 )l(�†�)m for l,m � 0 times
a factor ( n +  

†n) or (�2n + �
†2n) with odd n (or odd powers of them) or

also a factor
�
 
p(�†2)q +  

†p(�2)q
�
when p+ q is odd. Otherwise it is real.

Again maybe it is more convenient to introduce new variables as we did for
the pure pomeron case.

The potential is complex in a non trivial way. The potential is real in
the subspace of imaginary pomeron fields, i.e.  = ix and  

† = iy and
with odderon fields was square is imaginary an such that �†� is real, i.e.
� = e

i⇡/4
z, �† = e

�i⇡/4
w, with real x, y, z, w.

1.1 Signature factors

In the RFT language one is dealing with partial wave amplitudes which are
real valued. For a single reggeon exchange (i.e. the reggeon propagator)

one has a signature factor ⇠(!) = ⌧�e
�i⇡!

sin⇡!
, with ! = J � 1 the intercept

minus one and ⌧ = ±1 the reggeon signature. Then the signature factor for
an amplitude with multi reggeon exchange (also in loops), i.e. containing
multiple propagators, is given by �i

Q
j
(i⇠j). For |⇡!| ⌧ 1 the pomeron

(⌧ = +1) has ⇠ ' i while the odderon (⌧ = �1) has a real ⇠ ' � 2
⇡!

. Note
that for any reggeon approximated by a linear trajectory one has ! = �↵0

q
2.

If one considers a two reggeon correction to the pomeron and the odd-
eron, the signature factors S are given by:
- pomeron with SP = i: two pomeron state has SPP = �i and the two
odderon state has SOO = +i( 2

⇡!
)2.

- odderon with SO = � 2
⇡!

: the mixed pomeron-odderon state has SPO =
�(� 2

⇡!
).

This is in agreement with the expected sign of the corrections already dis-
cussed for the evolution given in Eqs. (3).
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Quartic interactions: most coupling remain real, but
                     and                         have imaginary coupling
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It is important to note the di↵erences in the structure of the e↵ective potential compared

to the pure Pomeron case. As described in [1], for the pure Pomeron case the couplings are

real-valued for even powers of the Pomeron fields, whereas odd powers require imaginary

couplings. This is a consequence of the even-signature of the Pomeron exchange which

leads to special trigonometric factors in front of multi-pomeron cut contributions in the

t-channel unitarity equations: the n-Pomeron contribution comes with a factor (�1)n�1.

This means, in particular, that the two Pomeron cut contribution to the Pomeron self-

energy has a minus sign which is obtained by requiring the triple Pomeron coupling to be

purely imaginary.

For the Odderon the situation is di↵erent: the Odderon has negative signature. This

has several consequences. First, because of signature conservation, t-channel states with

an odd number of odderons never mix with pure Pomeron channels. Second, the transition

P ! OO is real valued: the two-Odderon cut is positive (in contrast to the two Pomeron

cut), and there is no need for an imaginary coupling. On the other hand, the transition

O ! OP has to be imaginary, since the Odderon-Pomeron cut carries a minus sign. As a

result, all triple couplings are imaginary, except for the real-valued transition P ! OO.

In the sector of quartic couplings, all couplings involving Pomerons only are real-valued.

Once the Odderon is included, again most quartic couplings ramain real, but there are two

exceptions: the transitions O ! OOO and P ! P +OO are imaginary. This can be easily

understood considering a contribution to such quartic vertices coming by the composition
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It is important to note the di↵erences in the structure of the e↵ective potential compared

to the pure Pomeron case. As described in [1], for the pure Pomeron case the couplings are

real-valued for even powers of the Pomeron fields, whereas odd powers require imaginary

couplings. This is a consequence of the even-signature of the Pomeron exchange which

leads to special trigonometric factors in front of multi-pomeron cut contributions in the

t-channel unitarity equations: the n-Pomeron contribution comes with a factor (�1)n�1.

This means, in particular, that the two Pomeron cut contribution to the Pomeron self-

energy has a minus sign which is obtained by requiring the triple Pomeron coupling to be

purely imaginary.
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has several consequences. First, because of signature conservation, t-channel states with

an odd number of odderons never mix with pure Pomeron channels. Second, the transition

P ! OO is real valued: the two-Odderon cut is positive (in contrast to the two Pomeron

cut), and there is no need for an imaginary coupling. On the other hand, the transition

O ! OP has to be imaginary, since the Odderon-Pomeron cut carries a minus sign. As a

result, all triple couplings are imaginary, except for the real-valued transition P ! OO.

In the sector of quartic couplings, all couplings involving Pomerons only are real-valued.

Once the Odderon is included, again most quartic couplings ramain real, but there are two

exceptions: the transitions O ! OOO and P ! P +OO are imaginary. This can be easily

understood considering a contribution to such quartic vertices coming by the composition
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Fig. 1. Graphical representation of a multi-Regge poles con-
tribution to the elastic scattering amplitude. The zigzag lines
represent pomerons

rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.

2 Reggeon unitarity, energy cuts à la AGK,
and particle-pomeron couplings
in γ∗γ∗ scattering

2.1 The non-perturbative AGK rules

In this section we briefly review the AGK strategy and its
application to pQCD. We will conclude that the central
task is the derivation and the study of the coupling of four
(or more) reggeized gluons to virtual photons.

The original AGK paper starts from a multi-Regge
pole contribution to the elastic scattering amplitude
(Fig. 1), written as a Sommerfeld–Watson representation:

TAB(s, t) =
∫

dω

2i
ξ(ω)s1+ωF(ω, t). (1)

with ω = J − 1,

ξ(ω) =
τ − e−iπω

sin πω
= i

e−i π
2 (ω+ 1−τ

2 )

cos
[ π

2

(

ω + 1−τ
2

)]

= i +
[

tan
π
2

(

ω +
1 − τ

2

)]

, (2)

and τ = ± 1 being the signature. The (real-valued) par-
tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):

disc(n)
ω [F(ω, t)]

= 2πi
∫

dΩn

n!
γ{βj} NA

n ({kj};ω) NB
n ({kj};ω)

×δ(ω − Σjβj), (3)

dΩn = (2π)2δ2(q − Σjkj)
n
∏

j=1

d2kj

(2π)2
,

where kj (j = 1, ..., n) denotes the transverse momentum
of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2

j ) = αj = 1 + βj is
the Regge pole trajectory function. The factor which de-
termines the overall sign has the form

γ{βj} = ℑ
[

− iΠj(iξj)
]

= (−1)n−1
cos
[

π
2
∑

j

(

βj + 1−τj

2

)]

∏

j cos
[

π
2

(

βj + 1−τj

2

)] . (4)

As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
∏n

1
(∫

dωjδ(ωj − βj)
)

δ
(

ω −
∑

j ωj

)

: in this case, the
vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle

Symmetries

Couplings can be real or imaginary!
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It is important to note the di↵erences in the structure of the e↵ective potential compared

to the pure Pomeron case. As described in [1], for the pure Pomeron case the couplings are

real-valued for even powers of the Pomeron fields, whereas odd powers require imaginary

couplings. This is a consequence of the even-signature of the Pomeron exchange which

leads to special trigonometric factors in front of multi-pomeron cut contributions in the

t-channel unitarity equations: the n-Pomeron contribution comes with a factor (�1)n�1.

This means, in particular, that the two Pomeron cut contribution to the Pomeron self-

energy has a minus sign which is obtained by requiring the triple Pomeron coupling to be

purely imaginary.

For the Odderon the situation is di↵erent: the Odderon has negative signature. This

has several consequences. First, because of signature conservation, t-channel states with

an odd number of odderons never mix with pure Pomeron channels. Second, the transition

P ! OO is real valued: the two-Odderon cut is positive (in contrast to the two Pomeron

cut), and there is no need for an imaginary coupling. On the other hand, the transition

O ! OP has to be imaginary, since the Odderon-Pomeron cut carries a minus sign. As a

result, all triple couplings are imaginary, except for the real-valued transition P ! OO.

In the sector of quartic couplings, all couplings involving Pomerons only are real-valued.

Once the Odderon is included, again most quartic couplings ramain real, but there are two

exceptions: the transitions O ! OOO and P ! P +OO are imaginary. This can be easily

understood considering a contribution to such quartic vertices coming by the composition

of two triple ones. For the quintic part the ’exceptional’ terms are in the second and fourth

lines: in all these terms we either create or annihilate a pair of Odderons.
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to the pure Pomeron case. As described in [1], for the pure Pomeron case the couplings are
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for the change of the Odderon number

• States with even and odd Odderon number do not mix.
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In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e
�Wk[',J ] =

Z
D� µ(�) e

�S[�]�Sk[',⇠]�J ·⇠
, (1.3)

where we employ the infrared regulator Sk[', ⇠] =
1
2 ⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.4)

2

Hamiltonian form

Bartels, Contreras, G.P.V. (2017),
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The momentum integral contained in the trace can be done in the same way as de-

scribed in [1]. The energy integral will be performed by complex integration. Unfortunately

the analytic expression for the full flow of the potential is quite involved and di�cult to

handle. Since we are interested in an analysis based on polynomial expansions of the po-

tential in terms of the Pomeron and Odderon fields, we find it more convenient to derive

directly the flow equations for the polynomial coe�cients (couplings).

In this work we shall limit ourself in analyzing the flow of the potential expanded

around the origin (zero fields), i.e. we shall employ a weak field expansion. We shall

consider more refined analysis in a future investigation. Therefore, for the derivation of

the beta-functions of the couplings we find it convenient to expand the inverse of (3.2) in

the following way:

[�(2) + R]�1 = [�(2)
free

� Vint]
�1

= G(!, q) +G(!, q)VintG(!, q) +G(!, q)VintG(!, q)VintG(!, q) + ...(3.7)

Here we absorb the masses (intercepts minus one) into the free propagators:

G(!, q) =

 
GP (!, q) 0

0 GO(!, q)

!
, (3.8)

where

GP (!, q) =

 
0 (ZP (�i! + ↵

0
P
q
2) +RP � µP )�1

(ZP (i! + ↵
0
P
q
2) +RP � µP )�1 0

!
(3.9)

and

GO(!, q) =

 
0 (ZO(�i! + ↵

0
O
q
2) +RO � µO)�1

(ZO(i! + ↵
0
O
q
2) +RO � µO)�1 0

!
.(3.10)

The interaction matrix Vint is derived from the e↵ective potential, after removal of the

reggeon masses:

Vint = �

0

BBBB@

V
r

  
V

r

  † V
r

 �
V

r

 �†

V
r

 † 
V

r

 † † V
r

 †�
V

r

 †�†

V
r

� 
V

r

� † V
r
�� V

r

��†

V
r

�† 
V

r

�† † V
r

�†�
V

r

�†�†

1

CCCCA
. (3.11)

Here the upper script ’r’ reminds that the reggeon masses have been removed.

Finally we define the regulator matrix consisting of two block matrices. First we define

O± =

 
0 1

±1 0
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. (3.12)
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General strategy used here for a polynomial truncation of the potential.
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Here the upper script ’r’ reminds that the reggeon masses have been removed.

Finally we define the regulator matrix consisting of two block matrices. First we define
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. (3.12)

– 6 –

With these definitions the classical scaling (canonical) of the potential which would result
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The scale k dependent regulator functions are chosen as follows:
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This optimized regulator [26] allows for a simple analytic integration in a closed form.
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3 RG flow

3.1 Flow equations

In order to find the flow equation of the potential (which included Pomeron and Odderon

intercepts (masses) as well as all possible interactions) we need to compute the rhs of

the dimensionful flow equations which result from scale k controlled contributions from
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by one etc.

In the perturbative region, the transition P ! OO has been computed [21, 22] and

found to be nonzero. As one of our results we shall see that the dynamics allows for a critical

theory (as a fixed point of the flow in the local potential approximation (LPA), eventually

including anomalous dimensions (LPA’) ) at which n is conserved, i.e. all couplings which

change On go to zero:
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This applies, in particular, the coupling of the P ! OO transition.
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Anomalous dimensions: 
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Dimensionless quantities:

In the sector of quartic couplings, all couplings involving Pomerons only are real-valued.

Once the Odderon is included, again most quartic couplings remain real, but there are two

exceptions: the transitions O ! OOO and P ! P +OO are imaginary. This can be easily

understood considering a contribution to such quartic vertices coming by the composition

of two triple ones. For the quintic part the ’exceptional’ terms are in the second and fourth

lines: in all these terms we either create or annihilate a pair of Odderons.

The signature-conservation rule, together with the appearance of these ’exceptional’

cases suggests the following transition rules:

(i) states with even and odd numbers of Odderon never mix.

(ii) states will be labelled by the number of Odderon pairs, n. We assign a quantum

number On. Signature rules imply that transitions changing n by odd numbers come with

’exceptional’ couplings (e.g the transitions P ! OO, O ! OOO, or P ! P+OO), whereas

transitions changing n by even numbers are ’normal’ and have the same structure as pure

Pomeron couplings (e.g., the transition: Pomeron to four Odderons is imaginary).

This suggests to decompose the e↵ective potential into a sum terms V (n):

V = V
�n=0 +�V

|�n|=1 +�V
|�n|=2 + ... (2.5)

where the first term conserves n, the number of odderon pairs, the second one changes n

by one etc.

In the perturbative region, the transition P ! OO has been computed [21, 22] and

found to be nonzero. As one of our results we shall see that the dynamics allows for a critical

theory (as a fixed point of the flow in the local potential approximation (LPA), eventually

including anomalous dimensions (LPA’) ) at which n is conserved, i.e. all couplings which

change On go to zero:

�V
|�n|=1 ! 0, �V

|�n|=2 ! 0, .... (2.6)

This applies, in particular, the coupling of the P ! OO transition.

Next we introduce dimensionless variables. The field variables are rescaled as follows:

 ̃ = Z
1/2
P

k
�D/2

 , �̃ = Z
1/2
O

k
�D/2

�. (2.7)

For the potential we introduce

Ṽ =
V

↵0
P
kD+2

. (2.8)

This choice implies that we introduce the dimensionless ratio

r =
↵
0
O

↵0
P

, (2.9)
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Classical scaling:

With these definitions the classical scaling (canonical) of the potential which would result

by neglecting the quantum fluctuations in the flow equation becomes:
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3.2 � functions

We begin with the lowest (cubic) truncation. For this approximation of the e↵ective po-

tential, we keep on the rhs of (3.18) the terms with two and three V’s. The z-integral is

done by complex integration. We report here the result for the region r � µO > 0 which

can be verified ”a posteriori” to be the physical relevant region. The beta functions in

the complementary region r � µO < 0 can be computed in a similar way but we shall not

discuss them further. Including also the canonical part on the rhs of the flow equations we

find:

µ̇P = (�2 + ⌘P + ⇣P )µP + 2AP

�
2

(1� µP )2
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(1� µP )(1 + r � µP � µO)2

+
2�2

2�3AOr(1� µP )

(r � µO)2(1 + r � µP � µO)2
+

4��2�3AP (r � µO)

(1� µP )2(1 + r � µP � µO)2
. (3.21)

Here we have defined

AP = NDAD(⌘P , ⇣P ), AO = NDAD(⌘O, ⇣O). (3.22)

For the next truncation, the quartic approximation, we have to retain also the next term

on the rhs of (3.18) (containing four factors of Vint). The results for the beta functions are

already lengthy and will not be listed here. For the truncations of fourth order and beyond

we have used symbolic computational tools (Mathematica).

3.3 Anomalous dimensions

Having derived the beta function we need to mention a novel feature which was not present

for the pure Pomeron case: all beta functions will depend upon the parameter r defined

in (2.10), the ratio of the Odderon and Pomeron slopes. This dimensionless quantity by

itself depends upon the cuto↵ parameter k and therefore has its own beta function. The
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Performing the traces, the beta functions for dimensionless quantities are:

Cubic truncation: beta functions

Similarly, one can find the anomalous dimensions (from the flow of 2-point functions):

The anomalous dimensions are then given by:

�⌘P =
1

ZP

lim
!!0,q!0

@

@(i!)
I
(1,1)
P

(!, q) (3.34)

�⌘O =
1

ZO

lim
!!0,q!0

@

@(i!)
I
(1,1)
O

(!, q) (3.35)

and

�⌘P � ⇣P =
1

ZP↵
0
P

lim
!!0,q!0

@

@q2
I
(1,1)
P

(!, q) (3.36)

�⌘O � ⇣O =
1

ZO↵
0
O

lim
!!0,q!0

@

@q2
I
(1,1)
O

(!, q). (3.37)

The calculation of the derivatives with respect to z and q
2 has been described in [1].

For the z-derivative we obtain after the momentum integral:

1

ZP↵
0
P

dI
(11)
P

dz
= 2ND

Z
dz

0

2⇡i
· (3.38)

·Tr
" 

AD(⌘P , ⇣P )O+ 0

0 rAD(⌘O, ⇣O)O+

!
G(z0)

�Vint

� † G(z0)

 
O� 0

0 O�

!
G(z0)

�Vint

� 
G(z0)

#

1

ZO↵
0
P

dI
(11)
O

dz
= 2ND

Z
dz

0

2⇡i
· (3.39)

·Tr
" 

AD(⌘P , ⇣P )O+ 0

0 rAD(⌘O, ⇣O)O+

!
G(z0)

�Vint

��† G(z0)

 
O� 0

0 O�

!
G(z0)

�Vint

��
G(z0)

#
.

Similarly, for the q
2 derivative we find:

1

ZP↵
0
P

dI
(11)
P

dq2
=

ND

D

Z
dz

0

2⇡i
T r

" 
O+ 0

0 rO+

!
G(z0)

�Vint

� † G(z0)

 
O+ 0

0 rO+

!
G(z0)

�Vint

� 
G(z0)

#

(3.40)

1

ZO↵
0
O

dI
(11)
O

dq2
=

ND

rD

Z
dz

0

2⇡i
T r

" 
O+ 0

0 rO+

!
G(z0)

�Vint

��† G(z0)

 
O+ 0

0 rO+

!
G(z0)

�Vint

��
G(z0)

#
.

(3.41)

We quote the results for the expansion around zero fields (in this case, the results do

not depend upon the truncation since only cubic couplings are involved):

⌘P = � 2AP�
2

(1� µP )3
+

2AOr�
2
3

(r � µO)3
(3.42)

⌘O = � 4(AP +AO r)�22
(1 + r � µP � µO)3

(3.43)

and

⌘P + ⇣P = � ND�
2

D(1� µP )3
+

NDr
2
�
2
3

D(r � µO)3
(3.44)

⌘O + ⇣O = � 4ND�
2
2

D(1 + r � µP � µO)3
. (3.45)
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The anomalous dimensions are then given by:
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�Vint
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#
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Similarly, for the q
2 derivative we find:

1

ZP↵
0
P

dI
(11)
P

dq2
=

ND

D

Z
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0

2⇡i
T r

" 
O+ 0

0 rO+
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� † G(z0)

 
O+ 0
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(3.40)

1

ZO↵
0
O

dI
(11)
O

dq2
=

ND

rD

Z
dz

0

2⇡i
T r

" 
O+ 0

0 rO+

!
G(z0)

�Vint

��† G(z0)

 
O+ 0

0 rO+

!
G(z0)

�Vint

��
G(z0)

#
.

(3.41)

We quote the results for the expansion around zero fields (in this case, the results do

not depend upon the truncation since only cubic couplings are involved):

⌘P = � 2AP�
2

(1� µP )3
+

2AOr�
2
3

(r � µO)3
(3.42)

⌘O = � 4(AP +AO r)�22
(1 + r � µP � µO)3

(3.43)

and

⌘P + ⇣P = � ND�
2

D(1� µP )3
+

NDr
2
�
2
3

D(r � µO)3
(3.44)

⌘O + ⇣O = � 4ND�
2
2

D(1 + r � µP � µO)3
. (3.45)
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critical theory satisfies the fixed point condition ṙ = 0. We therefore need not only the

beta functions for the parameters of the e↵ective potential (coupling constants) but also

the anomalous dimensions. With the anomalous dimensions defined in (2.14), the evolution

equation for r then becomes:

ṙ = r (�⇣O + ⇣P ) , (3.23)

which tells that at criticality the Pomeron and Odderon transverse space scaling laws do

coincide.

In order to obtain the anomalous dimensions we first define the two-point vertex func-

tions:

�(1,1)
P

(!, q) =
�
2�

� (!, q)� †(!, q)
| = †=�=�†=0 (3.24)

and

�(1,1)
O

(!, q) =
�
2�

��(!, q)��†(!, q)
| = †=�=�†=0. (3.25)

From the flow equations we obtain:

�̇(1,1)
P

(!, q) = ↵
0
P

Z
dz

0
d
D
q
0

(2⇡)D+1
Tr


ṘG(z0, q0)

�Vint

� † G(z + z
0
, q + q

0)
�Vint

� 
G(z0, q0)

�
|O + ...

(3.26)

�̇(1,1)
O

(!, q) = ↵
0
P

Z
dz

0
d
D
q
0

(2⇡)D+1
Tr


ṘG(z0, q0)

�Vint

��† G(z + z
0
, q + q

0)
�Vint

��
G(z0, q0)

�
|O + ...

(3.27)

where the subscript ’O’ indicates that, after di↵erentiation, we have set all field variables

inside the trace equal to zero:  =  
† = � = �

† = 0, and the dots indicate that there are

more terms containing second derivatives of Vint with respect to the field variables which

will not contribute when taking derivatives in z
0 or q02. We have already taken into account

that, from the derivatives with respect to  , † (or �,�†) we have two identical contribu-

tions which compensate the overall factor 1
2 . The anomalous dimensions are obtained by

taking derivatives with respect to energy and momentum:

ZP = lim
!!0,q!0

@

@(i!)
�(1,1)
P

(!, q) (3.28)

ZO = lim
!!0,q!0

@

@(i!)
�(1,1)
O

(!, q) (3.29)

and

ZP↵
0
P = lim

!!0,q!0

@

@q2
�(1,1)
P

(!, q) (3.30)

ZO↵
0
O = lim

!!0,q!0

@

@q2
�(1,1)
O

(!, q). (3.31)

We introduce

�̇(1,1)
P

= I
(1,1)
P

(!, q) (3.32)

�̇(1,1)
O

= I
(1,1)
O

(!, q). (3.33)
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3.2 � functions

We begin with the lowest (cubic) truncation. For this approximation of the e↵ective po-

tential, we keep on the rhs of (3.18) the terms with two and three V’s. The z-integral is

done by complex integration. We report here the result for the region r � µO > 0 which

can be verified ”a posteriori” to be the physical relevant region. The beta functions in

the complementary region r � µO < 0 can be computed in a similar way but we shall not

discuss them further. Including also the canonical part on the rhs of the flow equations we

find:

µ̇P = (�2 + ⌘P + ⇣P )µP + 2AP

�
2

(1� µP )2
� 2AOr

�
2
3

(r � µO)2

µ̇O = (�2 + ⌘O + ⇣P )µO + 2(AP +AOr)
�
2
2

(1 + r � µP � µO)2

�̇ = (�2 +D/2 + ⇣P +
3

2
⌘P )�+ 8AP

�
3

(1� µP )3
� 4AOr

�2�
2
3

(r � µO)3

�̇2 = (�2 +D/2 + ⇣P +
1

2
⌘P + ⌘O)�2

+
2��2

2(6AP + 5AOr) + 4�3
2(AP +AOr)� 4�2�

2
3(AP + 2AOr)

(1 + r � µP � µO)3

+
2AP��

2
2(r � µO)2

(1� µP )2(1 + r � µP � µO)3
� 4AOr�2�

2
3(1� µP )2

(1� µO)2(1 + r � µP � µO)3

+
2��2

2(3AP +AOr)(r � µO)

(1� µP )(1 + r � µP � µO)3
� 4�2�

2
3(AP + 3AOr)(1� µP )

(r � µO)(1 + r � µP � µO)3

�̇3 = (�2 +D/2 + ⇣P +
1

2
⌘P + ⌘O)�3

+
2�2

2�3(AP + 2AOr)

(r � µO)(1 + r � µP � µO)2
+

4��2�3(2AP +AOr)

(1� µP )(1 + r � µP � µO)2

+
2�2

2�3AOr(1� µP )

(r � µO)2(1 + r � µP � µO)2
+

4��2�3AP (r � µO)

(1� µP )2(1 + r � µP � µO)2
. (3.21)

Here we have defined

AP = NDAD(⌘P , ⇣P ), AO = NDAD(⌘O, ⇣O). (3.22)

For the next truncation, the quartic approximation, we have to retain also the next term

on the rhs of (3.18) (containing four factors of Vint). The results for the beta functions are

already lengthy and will not be listed here. For the truncations of fourth order and beyond

we have used symbolic computational tools (Mathematica).

3.3 Anomalous dimensions

Having derived the beta function we need to mention a novel feature which was not present

for the pure Pomeron case: all beta functions will depend upon the parameter r defined

in (2.10), the ratio of the Odderon and Pomeron slopes. This dimensionless quantity by

itself depends upon the cuto↵ parameter k and therefore has its own beta function. The
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Finally, we specify our regulator. Clearly there is freedom in choosing a regulator; general

requirements have been discussed, e.g. in [20]. In this first study we make the simple choice

of the optimized flat regulator [23], leaving other regulator schemes for future investigations:

Rk(q) = Zk↵
0
k(k

2
� q

2)⇥(k2 � q
2) (2.24)

with

Ṙ = @tRk(q) = �Zk↵
0
k(k

2
� q

2)⇥(k2 � q
2)[⌘k + ⇣k] + 2k2Zk↵

0
k⇥(k2 � q

2)

= 2k2Zk↵
0
k✓(k

2
� q

2)

✓
1�

⌘k + ⇣k

2
(1�

q
2

k2
)

◆
. (2.25)

Defining

hk(q) = Zk↵
0
k(q

2 +Rk) = Zk↵
0
k(✓(k

2
� q

2)k2 + ✓(q2 � k
2)q2) (2.26)

and

Gk(!, q) =
⇣
�(2)
k + R

⌘�1
= (2.27)

1

Vk  Vk † † �
�
Z2
k!

2 + (hk + Vk  †)2
�
 

Vk † † iZk! � hk � Vk  †

�iZk! � hk � Vk † Vk  

!
,

and using of (2.25) we find

V̇k = 2Zk↵
0
kk

2
Z

d!d
D
q

(2⇡)D+1
✓(k2 � q

2)

�
Zk↵

0
kk

2 + Vk † 

� ⇣
1� ⌘k+⇣k

2 (1� q2

k2 )
⌘

Z2
k!

2 + (hk + Vk  †)2 � Vk  Vk † †
. (2.28)

Using Z
d
D
q

(2⇡)D
r
2p
✓(k2 � q

2) =
k
D+2p

D + 2p
ND (2.29)

with

ND =
2

p
4⇡

D
�(D/2)

(2.30)

and doing the ! integration by closing the contour in the complex plane we arrive at:

V̇k = NDAD(⌘k, ⇣k)↵
0
kk

2+D

⇣
1 +

V
k † 

Zk↵0
kk

2

⌘

r
1 + 2

V
k  †

Zk↵0
kk

2 +
V 2
k  †�Vk  Vk † †

(Zk↵0
kk

2)2

, (2.31)

where we have introduced the notation

AD(⌘k, ⇣k) =
1

D
�

⌘k + ⇣k

D(D + 2)
. (2.32)

It s convenient to turn to the dimensionless potential Ṽk introduced in (2.22):

V̇k = NDAD(⌘k, ⇣k)↵
0
kk

2+D
1 + Ṽ

k ̃ ̃†
q
1 + 2Ṽ

k ̃ ̃† + Ṽ 2
k ̃ ̃† � Ṽk ̃ ̃Ṽk ̃† ̃†

. (2.33)
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Finally, we specify our regulator. Clearly there is freedom in choosing a regulator; general

requirements have been discussed, e.g. in [20]. In this first study we make the simple choice
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� q
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◆
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hk(q) = Zk↵
0
k(q

2 +Rk) = Zk↵
0
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� q
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and
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⇣
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⌘�1
= (2.27)

1

Vk  Vk † † �
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Z2
k!

2 + (hk + Vk  †)2
�
 

Vk † † iZk! � hk � Vk  †

�iZk! � hk � Vk † Vk  

!
,

and using of (2.25) we find

V̇k = 2Zk↵
0
kk

2
Z

d!d
D
q

(2⇡)D+1
✓(k2 � q

2)

�
Zk↵

0
kk

2 + Vk † 

� ⇣
1� ⌘k+⇣k

2 (1� q2

k2 )
⌘

Z2
k!

2 + (hk + Vk  †)2 � Vk  Vk † †
. (2.28)

Using Z
d
D
q

(2⇡)D
r
2p
✓(k2 � q

2) =
k
D+2p

D + 2p
ND (2.29)

with

ND =
2

p
4⇡

D
�(D/2)

(2.30)

and doing the ! integration by closing the contour in the complex plane we arrive at:

V̇k = NDAD(⌘k, ⇣k)↵
0
kk

2+D

⇣
1 +

V
k † 

Zk↵0
kk

2

⌘

r
1 + 2

V
k  †

Zk↵0
kk

2 +
V 2
k  †�Vk  Vk † †

(Zk↵0
kk

2)2

, (2.31)

where we have introduced the notation

AD(⌘k, ⇣k) =
1

D
�

⌘k + ⇣k

D(D + 2)
. (2.32)

It s convenient to turn to the dimensionless potential Ṽk introduced in (2.22):

V̇k = NDAD(⌘k, ⇣k)↵
0
kk

2+D
1 + Ṽ

k ̃ ̃†
q

1 + 2Ṽ
k ̃ ̃† + Ṽ 2

k ̃ ̃† � Ṽk ̃ ̃Ṽk ̃† ̃†

. (2.33)
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 31

Critical theory (fixed point): perturbative one loop results:

Perturbation theory:  -expansion:✏ D=4�✏

3.4 Analysis near D = 4: ✏-expansion

From a quick look at the beta functions given in Eq. (3.21) of the couplings �, �2 and �3

of the cubic truncation one sees that they do not scale when D ! 4, which is the critical

dimension of the system. In this section we show the results of an analysis of the theory

close to the critical dimension (D = 4 � ✏) at one loop, restricted to the cubic truncation

only. Such an analysis can help to identify a possible critical behavior of the system which

may survive, at a qualitative level, down to D = 2. In the next Section, after a numerical

analysis with higher truncations in D = 2, we shall also investigate numerically the fixed

points of the cubic truncation for continuos dimensions (0 < D < 4).

Evaluating the Eq. (3.21), (3.22) and (3.42)-(3.45) for D = 4 � ✏ one searches for

solutions such that �2
,�

2
2,�

2
3, µP , µO = O(✏). We find that, apart from the pure Pomeron

scaling solution, in the presence of the Odderon field only other fixed point is allowed:

µP =
✏

12
, �

2 =
8⇡2

3
✏, ⌘P = � ✏

6
, ⇣P = ⇣O =

✏

12
, (3.46)

µO =
95+17

p
33

2304
✏, �2 =

23
p
6+11

p
22

48
✏, �3 = 0, ⌘O = �7+

p
33

72
✏, r =

3

16
(
p
33�1).

Moreover the spectral analysis of the stability matrix is able to show the other universal

quantities of the system, apart from the anomalous dimensions. In particular we find two

negative eigenvalues, associated to two relevant directions, and the corresponding critical

exponents:

�1 = �2 +
✏

4
! ⌫P =

1

2
+

✏

16

�2 = �2 +
✏

12
! ⌫O =

1

2
+

✏

48
. (3.47)

We note that the most negative eigenvalue (strongest relevat operator) is associated to

the Odderon sector. We have not found other solutions with all real couplings and �3 6= 0.

We also note that the values of the couplings and the critical exponents and anomalous

dimensions in the Pomeron sector are exactly the same as in the pure pomeron case [1].

This seems to favour, at least in the vicinity of the critical dimensionD = 4, the existence of

just two non trivial fixed points, one with the pure pomeron content, and another one with

both interacting fields, where the interaction responsible for creating the odderon fields is

turned o↵. That is the scaling solution of Eq. (3.46) is a theory conserving the Odderon

number, and the direction in parameter space which contains the operator breaking such

conservation is irrelevant.

4 Numerical results

4.1 Search for fixed points

In a first step of searching critical theories (scaling solutions)1 for the physical D = 2

transverse dimension we set the anomalous dimensions equal to zero and search for fixed
1We stress that such solutions for the fixed point of the flow cannot be related to a CFT in the whole

2+1 dimensional space because they are characterized by anisotropic scaling between the rapidity direction

and the transverse space.
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Critical exponents: two relevant directions

The Pomeron sector is not affected by the presence of the Odderon!

The coupling of the changing Odderon number operator is zero! 
The P        OO transition present in perturbative QCD is irrelevant and disappears.  
Suppression of high mass diffractive scattering processes.

1

e
��k[�̄] =

Z
D� µk e

�S[�]+
��k
��̄

·(���̄)��Sk[���̄]
(1.1)

�Sk[�] =
1
2�·Rk · �

�[ †
, ,�

†
,�] =

Z
dDx d⌧

✓
ZP (

1

2
 
†$
@⌧ � ↵

0
P 

†r2
 ) + ZO(

1

2
�
†$
@⌧�� ↵

0
O�

†r2
�) + Vk[ , 

†
,�,�

†]

◆

Rk(p2) > 0 for p2 ⌧ k
2
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These qualitative features are maintained at non perturbative level!
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Explicit analysis at order 3,4,5 of the fixed points seems to show that the interactions 
changing the Odderon number are absent in the critical theory.

Non perturbative analysis in

We perform the analysis of the fixed point up to order 9, 
neglecting (apart in r) the anomalous dimensions.

D=2
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Figure 1: Values of the parameters of the fixed point solution of the LPA truncations for

di↵erent orders n of the polynomial (3  n  9). The masses (which equal intercept minus

one) µP (red curve) and µO (blue dotted curve) for the Pomeron and Odderon fields are

in the left panel. The first non zero couplings �,�2,�41,�42,�43,�46,�47, r are reported on

the right panel.

r = 0.88018). The stability properties are the same as in the cubic case: three negative

eigenvalues (�1.8159, �1.6751 and �0.20957). The Pomeron and Odderon sectors are de-

coupled, since the three exceptional couplings �3,�44,�45 vanish. The Pomeron parameters

are the same as in the pure Pomeron case at the corresponding order. There exist three

eigenvectors which span the subspace of the three ’exceptional ’ couplings �3,�44,�45. They

have positive eigenvalues, i.e. this subspace is part of the 10-dimensional critical subspace.

Inside this subspace they are orthogonal to all other 7 eigenvectors with positive eigenval-

ues. Concerning the three eigenvectors with negative eigenvalues (which define the relevant

directions), they are also orthogonal to three eigenvectors in the exceptional’ directions.

All this leads to the conclusion that near this fixed point the ’exceptional’ couplings

define a subspace inside the critical subspace which is orthogonal both to the remaining

part of the critical subspace and to the three relevant directions. This subspace decouples

from the other part.

We observe that this special fixed point solution is associated to a critical theory

conserving the Odderon number. We do not find any other physical critical solution with

all couplings being nonzero.

We then push the analysis for this special fixed point solution up to order 9 in the

polynomial expansion. We collect the results found in two figures in order to show the

convergence with respect to the order of the truncation. In Fig. 1 we show on the left

side the values for µP and µO while on the right side we give the values of the non zero

couplings which characterize the truncation up to order fourth, for all the orders n between

3 and 9. We note that µP > µO in all truncations. We see how at order 9 a good stability

is reached. We stress that all the quantities reported in this figure are not universal.

In the subsequent Fig. 2 we show the critical exponents ⌫P and ⌫O (left plot) and the

third negative eigenvalue (right plot) found at di↵erent orders of the polynomial expansion.

Also here we see that at order 9 also the critical exponents have reached values which are

almost independent of the order of the polynomial.
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Couplings: fixed point values 
are stable at order 9.

We find three relevant directions. 
Critical exponents:
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Figure 2: Values of the critical exponents of the fixed point solution of the LPA truncations

for di↵erent orders n of the polynomial (3  n  9). The two negative leading eigenvalues

define the two critical exponents ⌫P (red curve) and ⌫O (blue dotted curve) for the Pomeron

and Odderon fields (left panel). We report also the value of a third negative eigenvalue

found in our approximation (right panel).

4.2 The fixed point solution in continuous dimensions.

In this last part we restrict ourselves to the lowest cubic truncation, use the expansion

around the origin, include the anomalous dimension and vary the transverse dimension

D continuously between 0 and 4. We already have the experience for the pure Pomeron

sector that the cubic expansion is less reliable in estimating the critical exponent ⌫P than

an expansion around a non trivial configuration field configuration (in [1] we used an

expansion around the stationary point on the axes of the ( , †) plane). Since the fixed

point of the interacting Pomeron-Odderon system found above leaves the Pomeron sector

unchanged, we expect a similar situation in the present case. But even if we cannot expect

the critical exponents ⌫P and ⌫O (see Fig. 2) to be well described, it interesting to see how

they connect with the result of the ✏-expansion analysis near D = 4.

We collect some results in Fig. 3 where, on the left panel we show the results of a

numerical analysis for ⌫P (D) for the Pomeron sector only in the two di↵erent expansions

around the origin (continuous red line) and around a non trivial stationary point on the

axes (dashed green line), while on the right panel we compare the results of the expansion

around the origin ⌫P and ⌫O.

From our previous analysis of the pure Pomeron sector we could observe that, contrary

to the critical exponent ⌫, an expansion around the origin within the cubic truncation was

able to give not too bad numerical predictions for the anomalous dimensions atD = 2. This

was not true anymore for higher order truncations. The expansion around a non trivial

configuration on the axes was behaving much better at a generic order of the polynomial,

even if the simple cubic truncation around the origin was giving better values. This is

shown on the left panel of Fig. (4), noting that the Monte Carlo results for a Directed

Percolation model in D = 2 which lies in the same universality class of the Pomeron RFT

are pointing to a value for the anomalous dimension ⌘P ' �0.4. In the center and right

plots of Fig. (4) we show ⌘P,O(D) and ⇣P,O(D) respectively. They are in agreement with
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Anomalous dimensions (cubic truncation estimate, close to   -expansion result):

directions. In particular, summarizing our results reported in Section 4, we have the fol-

lowing estimates: for the critical exponents ⌫P ' 0.73, ⌫O ' 0.6, and in our approximation

we find also a third negative eigenvalue �3 ' �0.26 (relevant direction); for the anomalous

dimensions we find ⌘P ' �0.33, ⌘O ' �0.35 and ⇣P = ⇣O ' +0.17. More corrected values

for the anomalous dimensions can be 20% larger in magnitude according to what we ob-

serve from Monte Carlo analysis in the pure Pomeron sector. This generalizes the previous

results obtained for the pure Pomeron case, where we have found a fixed point with on

relevant direction. For such a fixed point, at first sight, the situation looks as follows:

starting at k 6= 0 at a generic value in the parameter space of the e↵ective potential (not

too far from the fixed point) the flow will eventually be attracted by the relevant direction

and move away from the fixed point. The relevant directions define an orthogonal subspace

which we name ’critical subspace’: if one starts within this subspace one ends up at the

infrared stable fixed point. Like the Pomeron RFT, this extended RFT model may be re-

lated to a generalized multicomponent directed percolating system, characterized by some

special symmetries. For the latter we have found slightly di↵erent critical exponents which

suggest the existence of a new universality class. This is certainly true in the vicinity of

D = 4, from the ✏-expansion analysis. Nevertheless more refined analysis employing larger

truncations should be done for the case of two transverse dimensions.

A closer look, however, leads to a somewhat di↵erent picture. Our fixed point analysis

was done in the space of dimensionless parameters (cf. section 2), and the flow of the

physical (i.e. dimensionful) parameters can be quite di↵erent. In particular, when k ! 0,

the nonvanishing fixed point values values of the (dimensionless) Pomeron and Odderon

masses lead to vanishing physical masses. Also, a flow outside the critical surfaces may

very well lead to finite values of µO or µP . Whereas for the pure Pomeron case we have

performed numerical studies of the flow of the dimensionless and dimensionful parameters,

for the Pomeron-Odderon system such a study remains a task for future studies. In any

case, for trajectories starting inside the critical surface the situation appears to be quite

clear: in the infrared limit both the Pomeron and the Odderon intercepts approach one, and

the fixed point value for the parameter r fixes the ratio of the Odderon and the Pomeron

slopes. Phenomenologically, not much is known about the Odderon slope [27, 28], and our

result might be seen as an asymptotic prediction.

There is another interesting feature of the fixed point which we have found. Namely, a

particular set of Pomeron-Odderon couplings, although allowed by signature conservation,

vanishes at the fixed point. We interpret this result as a particular conservation law which

holds in high energy scattering provided the theory lies on the critical surface and in the

deep infrared limit ends at the critical point: the t-channel states formed by Pomeron and

Odderons conserve the number of Odderon pairs and there are no transitions from pure

Pomeron states to states containing Odderons. In other words, the Pomeron exchanges

never mix with Odderon states - the Pomeron does not feel the existence of the Odderon,

whereas the Odderon feels strong absorption through interactions with the Pomeron.

In this scenario the possibility that in the deep IR region the POO vertex is sup-

pressed may have phenomenological consequences. Processes involving a simple Odderon

exchange, like hadron scattering pp - pp̄ or meson photo-production [29] would be allowed
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Conclusions and outlook

• In perturbation theory it is possible to directly compare or complement   
results with ones from CFT techniques (conformal universal data).
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• At theoretical level tool to study the (geometry of)  theory space of QFTs 

• Main problem: choice of truncations and approximations! 
    Still new ideas are needed for a systematic control of the convergence. 

• Functional renormalization group is a powerful tool not yet fully 
    exploited to study both critical and off-critical QFTs. 

• It can be used both at perturbative and non perturbative (wilsonian) level 

• At non perturbative level one has scheme dependent exact RG flow 
equations.

• In many cases gives results at the level of montecarlo analysis 
    for strongly interacting theories.

• Gauge theories still harder to investigate at accurate level 


