

Roberto Percacci

SISSA, Trieste

Vietri, March 27, 2018

Old point of view: Only renormalizable theories are consistent and useful. All others should be discarded. *"G 't Hooft turned the Weinberg-Salam frog into a beautiful prince"*

Modern point of view: renormalizability not necessary. EFT framework dominant in current particle physics. Even WS theory is seen as EFT.

Proposal: use AS as criterion to select viable theories. Gain predictivity and range of applicability.

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
Criteria						

We judge theories on the basis of their predictivity and range of validity.

In a renormalizable theory only a finite number of parameters have to be determined from experiment, the others can be calculated. Renormalizable theories are highly predictive.

This does not mean that non-renormalizable theories have no predictive power.

EFT based on an expansion in E/M. Predictive for $E \ll M$.

Typical situation: M mass of unreachable heavy states. Effective action functionals for low mass fields at energy E contains non-renormalizable terms suppressed by inverse powers of M:

$$\mathsf{S}(\phi) = \sum_i g_i \mathcal{O}_i(\phi)$$

If $[\mathcal{O}_i] = -2, 0, 2, 4...$, then $d_i \equiv [g_i] = 2, 0, -2, -4...$ Generically $g_i = \tilde{g}_i M^{d_i}$ where \tilde{g}_i are dimensionless.

At a given order there can be more observable quantities than undetermined parameters so the theory is predictive within its low energy domain of validity.

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
UV complet	eness					

In order to narrow down class of theories demand predictivity at all energies.

Beyond EFT: Asymptotic freedom (e.g. QCD).

Generalizes to asymptotic safety

Rename $M \rightarrow k$.

Think of S_k as the result of having integrated out all modes with energy > k.

k is the UV cutoff for the EFT describing the low momentum modes.

Dependence of S_k on k is such that the PI on modes from k to 0 is fixed.

 S_0 is $-\log Z$.

[Could also use a 1PI effective action.]

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
Theory spa	се					

$$S_k(\phi) = \sum_i g_i(k) \mathcal{O}_i(\phi)$$

Beta functions

$$\beta_i(g_j,k) = k \frac{dg_i}{dk}$$

Dimensionless combinations $\tilde{g}_i = k^{-d_i}g_i$ are coordinates in theory space.

$$ilde{eta}_i(ilde{g}_j)\equiv krac{d ilde{g}_i}{dk}=-d_i ilde{g}_i+k^{-d_i}eta_i$$

and from dimensional analysis $\tilde{\beta}_i(\tilde{g}_j)$. Well-defined flow on theory space.

Theory = RG trajectory

Qualitative behavior of the flow is determined by fixed points.

Perturbation theory is based on Gaussian fixed point. In PT all but a finite number of \tilde{g}_i blow up for $k \to \infty$. Sometimes they even blow up at finite *k* (Landau poles). Generically leads to divergences in physical observables.

Perhaps instead they reach another fixed point.

UV safe RG trajectories = renormalizable RG trajectories

- = RG trajectories that reach a FP in the UV
- = UV complete theories

Define S_{UV} the basin of attraction of the fixed point.

Linearized flow

$$k \frac{dy_i}{dk} = M_{ij}y_j$$
; $M_{ij} = \frac{\partial \tilde{eta}_i}{\partial \tilde{g}_i}$ $y_i = \tilde{g}_i - \tilde{g}_{i*}$

Diagonalize: $z_i = S_{ij}^{-1} y_j$, $S^{-1}MS = \text{diag}(\lambda_1, \lambda_2 \dots)$

$$k\frac{dz_i}{dk} = \lambda_i z_i$$

- $\lambda_i < 0 \implies z_i$ relevant
- $\lambda_i > 0 \implies z_i$ irrelevant

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
PREDICTIVIT	Y					

- $\dim(S_{UV})=\#$ of negative eigenvalues of *M*.
- If the space of renormalizable trajectories is finite dimensional,
- AS \implies all irrelevant $z_i = 0$
- \implies at all energy scales only finitely many parameters are free.

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
GENERAL PI	CTURE					

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
EXAMPLES						

QCD:

• Gaußian Fixed Point at $\tilde{g}_{i*} = 0$.

•
$$M_{ij}|_* = -d_i\delta_{ij}$$

• relevant couplings=renormalizable couplings

Non-AF examples?

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
GENERAL N	LSM					

$$\frac{1}{2}Z\int d^d x\,\partial_\mu\varphi^\alpha\partial^\mu\varphi^\beta h_{\alpha\beta}(\varphi)$$

$$Z = \frac{1}{g^2}$$

$$Z \approx \text{mass}^{d-2}, g \approx \text{mass}^{\frac{2-d}{2}}$$

nonrenormalizable in $d > 2$

Ricci flow:

$$\frac{d}{dt}\left(Zh_{\alpha\beta}\right)=2c_{d}k^{d-2}R_{\alpha\beta}$$

 $c_d = rac{1}{(4\pi)^{d/2} \Gamma(d/2+1)}$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
O(N) NLSM	(ZINN-JU	stin)				

$$\beta_{g^2} = -2c_2(N-2)\tilde{g}^4$$

In $d = 2 + \epsilon$: $\tilde{g}^2 = k^{d-2}g^2$ and

$$\beta_{g^2} = \epsilon \tilde{g}^2 - 2c_d(N-2)\tilde{g}^4$$

non gaussian FP at

$$\tilde{g}_*^2 = \frac{d-2}{2} \frac{1}{c_d(N-2)}$$

 $\frac{d\beta}{d\tilde{g}}\Big|_{*} = 2 - d.$ Confirmed by Monte-Carlo calculations in d = 3.

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
Other old ex	amples					

Gross-Neveu model in d = 3

Gauge theories in $d = 4$: one loop								
Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions		

$$L_{YM} = -\frac{1}{4} \text{tr} F_{\mu\nu} F^{\mu\nu}$$

$$L_F = \bar{\psi} i D \psi$$

$$\alpha_g = \frac{g^2 N_c}{(4\pi)^2}$$

$$\beta_g = -B \alpha_g^2$$

$$B = -\frac{4}{3} \epsilon ; \qquad \epsilon = \frac{N_F}{N_c} - \frac{11}{2}$$

$$N_F < \frac{11}{2} N_c \Longrightarrow \epsilon < 0 \Longrightarrow B > 0 \Longrightarrow \text{AF}$$

[W.E. Caswell, Phys. Rev. Lett. 33 (1974) 244] found $C \geq 0$

[T. Banks and A. Zaks, Nucl. Phys. B 196 (1982)]

$$L_{H} = \operatorname{tr}(\partial^{\mu}H)^{\dagger}(\partial_{\mu}H)$$

$$L_{Y} = y \operatorname{tr}(\bar{\psi}_{L}H\psi_{R} + \bar{\psi}_{R}H\psi_{L})$$

$$\alpha_y = \frac{y^2 N_c}{(4\pi)^2}$$

$$\beta_{g} = \alpha_{g}^{2} \left[\frac{4}{3} \epsilon + \left(25 + \frac{26}{3} \epsilon \right) \alpha_{g} - 2 \left(\frac{11}{3} + \epsilon \right) \alpha_{y} \right]$$

$$\beta_{y} = \alpha_{y} \left[(13 + 2\epsilon) \alpha_{y} - 6 \alpha_{g} \right]$$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
Fixed points	;					

$$(\alpha_{g*}, \alpha_{y*}) = \left(-\frac{4\epsilon}{75+26\epsilon}, 0\right)$$

for ϵ < 0, Banks-Zaks

$$\begin{aligned} (\alpha_{g*}, \alpha_{y*}) &= \left(\frac{2 \left(13\epsilon + 2\epsilon^2 \right)}{57 - 46\epsilon - 8\epsilon^2}, \frac{12\epsilon}{57 - 46\epsilon - 8\epsilon^2} \right) \\ &\approx \left(0.456\epsilon + O(\epsilon^2), 0.211\epsilon + O(\epsilon^2) \right) \end{aligned}$$

for $\epsilon > 0$, Litim and Sannino

[D.F. Litim and F. Sannino, JHEP 1412 (2014) 178]

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
Phase diam	ram					

$$V = -u\operatorname{tr}((H^{\dagger}H)^{2}) - u(\operatorname{tr}(H^{\dagger}H))^{2}$$

Fixed point persists

Applications to BSM physics

[A. Bond, G. Hiller, K. Kowalska, D. Litim, Directions for model building from asymptotic safety. arXiv:1702.01727 [hep-ph]]
[R.B. Mann, J.R. Meffe, F. Sannino, T.G. Steele, Z.W. Wang and C. Zhang, Asymptotically safe Standard Model via vector-like fermions arXiv:1707.02942 [hep-th]]
[G.M. Pelaggi, F. Sannino, A. Strumia, E.Vigiani, Naturalness of asymptotically safe Higgs, Front.in Phys. 5 (2017) 49, arXiv:1701.01453 [hep-ph]]
[G.M. Pelaggi, A. Plascencia, A. Salvio, F. Sannino, Y. Smirnov, A. Strumia, Asymptotically Safe Standard Model Extensions? arXiv:1708.00437 [hep-ph]]

Expand

$$g_{\mu
u}=ar{g}_{\mu
u}+h_{\mu
u}$$

Gauge fix using a background gauge fixing condition e.g.

$$\mathcal{S}_{GF}(ar{g},h)=rac{1}{2}\int dx\sqrt{-ar{g}}\,ar{g}^{\mu
u}\chi_{\mu}\chi_{
u}\,;\qquad \chi_{\mu}=ar{
abla}^{
u}h_{
u\mu}-rac{1}{2}ar{
abla}_{\mu}h$$

Add ghost Lagrangian

$$\mathcal{S}_{ghost}(ar{g},ar{c},c) = \int dx \sqrt{-ar{g}}\,ar{c}^\mu (-\delta^
u_\mu ar{
abla}^2 - ar{R}^
u_\mu) c_
u$$

Compute $\Gamma(\bar{g}, h)$. Formalism preserves background gauge invariance: $\delta_{\epsilon}\bar{g}_{\mu\nu} = \mathcal{L}_{\epsilon}\bar{g}_{\mu\nu}, \, \delta_{\epsilon}h_{\mu\nu} = \mathcal{L}_{\epsilon}h_{\mu\nu}.$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
ISSUES						

Non-renormalizable (Goroff and Sagnotti 1985)

- interaction strength grows like $\tilde{G} = Gk^2$
- violation of unitarity
- Iack of predictivity

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
Gravity						

$$S = \int d\mathbf{x} \sqrt{g} \left[2m_P^2 \Lambda - m_P^2 R + \ell_1 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + \ell_2 R_{\mu\nu} R^{\mu\nu} + \ell_3 R^2 + O(\partial^6) \right]$$

$$R \sim \Gamma \Gamma \sim (g^{-1} \partial g)^2$$

 m_P similar to f_{π} . (Analogy even better in unimodular case $\sqrt{g} = 1$.)

Concrete problem: quantum corrections to Newtonian potential

A prediction of quantum gravity

$$V(r) = -\frac{Gm_1m_2}{r}\left[1 + \frac{41}{10\pi}\frac{G\hbar}{r^2c^3} + \ldots\right]$$

Comes from non-local terms in the effective action, e.g.

$$\int dx \sqrt{g} \left[RF_1(\Box) R + R_{\mu\nu} F_2(\Box) R^{\mu\nu} + \ldots \right]$$

Local terms cannot be predicted

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
Lossons						
Lessons						

- this is a quantum theory of gravity
- it agrees with all experimental data
- has vast range of applicability

but

- open issues in the UV, IR, strong field...
- not a quantum theory of spacetime

Try to extend beyond Planck scale

- higher derivative gravity (renormalizable and AF)
- special combinations of gravity and matter (SUGRA)
- give up Lorentz invariance (Hořava)
- on non-perturbative framework

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
ONE LOOP (CORRECTIO	ons in Einst	rein's T	HEORY		

$$k\frac{d}{dk}\frac{1}{16\pi G(k)} = ck^{d-2}$$
$$k\frac{dG}{dk} = -16\pi cG^2 k^{d-2}$$
$$\tilde{G} = Gk^{d-2}$$
$$k\frac{d\tilde{G}}{dk} = (d-2)\tilde{G} - 16\pi c\tilde{G}^2$$
point at $\tilde{G} = (d-2)/16\pi c$

fixed point at $\tilde{G} = (d-2)/16\pi c$ $c = \frac{11}{3\pi}, \frac{35}{8\pi}, \frac{23}{3\pi}, \dots$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
GRAVITY IN	$d = 2 + \epsilon$					

 $d = 2 + \epsilon$

$$ilde{G} = Gk^{\epsilon}$$

 $eta_{ ilde{G}} = \epsilon ilde{G} - rac{38}{3} ilde{G}^2$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
		TIONS				

$$\beta_{\tilde{G}} = 2\tilde{G} - \frac{46\tilde{G}^2}{6\pi},$$
$$\beta_{\tilde{\Lambda}} = -2\tilde{\Lambda} + \frac{2\tilde{G}}{4\pi} - \frac{16\tilde{G}\tilde{\Lambda}}{6\pi}$$

$$ilde{\Lambda}_* = rac{3}{62} \qquad ilde{G}_* = rac{12\pi}{46}$$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
ONE LOOP F	LOW					

Topologically massive gravity

Action

$$S(g) = \frac{1}{16\pi G} \int d^3x \sqrt{g} \left(2\Lambda - R + \frac{1}{2\mu} \varepsilon^{\lambda\mu\nu} \Gamma^{\rho}_{\lambda\sigma} \left(\partial_{\mu} \Gamma^{\sigma}_{\nu\rho} + \frac{2}{3} \Gamma^{\sigma}_{\mu\tau} \Gamma^{\tau}_{\nu\rho} \right) \right)$$

Dimensionless combinations of couplings

$$u = \mu {f G} \; ; \qquad au = \Lambda {f G}^2 \; ; \qquad \phi = \mu / \sqrt{|\Lambda|}$$

R.P., E. Sezgin, Class.Quant.Grav. 27 (2010) 155009, arXiv:1002.2640 [hep-th]

Recently extended to TM SUGRA: R.P., M. Perry, C. Pope, E. Sezgin, arXiv 1302.0868

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions

Beta functions of

$$\begin{array}{lll} \beta_{\nu} & = & 0 \; , \\ \beta_{\tilde{G}} & = & \tilde{G} + B(\tilde{\mu})\tilde{G}^2 \; , \\ \beta_{\tilde{\Lambda}} & = & -2\tilde{\Lambda} + \frac{1}{2}\tilde{G}\left(A(\tilde{\mu},\tilde{\Lambda}) + 2B(\tilde{\mu})\tilde{\Lambda}\right) \end{array}$$

(1)

Since $\overline{
u}=\mu G= ilde{\mu} ilde{G}$ is constant

can replace $\tilde{\mu}$ by ν/\tilde{G}

Figure: The flow in the $\tilde{\Lambda}$ - \tilde{G} plane for $\nu = 5$ (left) and $\nu = 0.1$ (right).

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions

$$\Gamma_k = \int d^4 x \sqrt{g} \left[2Z\Lambda - ZR + rac{1}{2\lambda} \left(C^2 - rac{2\omega}{3}R^2 + 2\theta E
ight)
ight]$$
 $Z = rac{1}{16\pi G}$

[K.S. Stelle, Phys. Rev. D16, 953 (1977).]

- [J. Julve, M. Tonin, Nuovo Cim. 46B, 137 (1978).]
- [E.S. Fradkin, A.A. Tseytlin, Phys. Lett. 104 B, 377 (1981).]
- [I.G. Avramidi, A.O. Barvinski, Phys. Lett. 159 B, 269 (1985).]
- [G. de Berredo-Peixoto and I. Shapiro, Phys.Rev. D71 064005 (2005).]
- [A. Codello and R. P., Phys.Rev.Lett. 97 22 (2006).]
- [M. Niedermaier, Nucl. Phys. B833, 226-270 (2010).]
- [N. Ohta and R.P. Class. Quant. Grav. 31 015024 (2014); arXiv:1308.3398]

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
BETA FUNCI	TIONS I					

$$\beta_{\lambda} = -\frac{1}{(4\pi)^2} \frac{133}{10} \lambda^2$$

$$\beta_{\omega} = -\frac{1}{(4\pi)^2} \frac{25 + 1098\omega + 200\omega^2}{60} \lambda$$

$$\beta_{\theta} = \frac{1}{(4\pi)^2} \frac{7(56 - 171\theta)}{90} \lambda$$

$$\lambda(k) = \frac{\lambda_0}{1 + \lambda_0 \frac{1}{(4\pi)^2} \frac{133}{10} \log\left(\frac{k}{k_0}\right)}$$
(1)

 $egin{aligned} &\omega({m k})
ightarrow \omega_*pprox -0.0228 \ & heta({m k})
ightarrow heta_*pprox 0.327 \end{aligned}$
Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions

$$\beta_{\tilde{\Lambda}} = -2\tilde{\Lambda} + \frac{1}{(4\pi)^2} \left[\frac{1+20\omega^2}{256\pi\tilde{G}\omega^2} \lambda^2 + \frac{1+86\omega+40\omega^2}{12\omega} \lambda\tilde{\Lambda} \right]$$
$$-\frac{1+10\omega^2}{64\pi^2\omega} \lambda + \frac{2\tilde{G}}{\pi} - q(\omega)\tilde{G}\tilde{\Lambda}$$
$$\beta_{\tilde{G}} = 2\tilde{G} - \frac{1}{(4\pi)^2} \frac{3+26\omega-40\omega^2}{12\omega} \lambda\tilde{G} - q(\omega)\tilde{G}^2$$

where $q(\omega)=(83+70\omega+8\omega^2)/18\pi$

$$eta_{ ilde{\Lambda}} = -2 ilde{\Lambda} + rac{2 ilde{G}}{\pi} - q_* ilde{G} ilde{\Lambda} \ eta_{ ilde{G}} = 2 ilde{G} - q_* ilde{G}^2$$

where $q_* = q(\omega_*) pprox$ 1.440

$$ilde{\Lambda}_* = rac{1}{\pi q_*} pprox 0.221 \;, \qquad ilde{G}_* = rac{2}{q_*} pprox 1.389 \;.$$

Define the EAA $\Gamma_k(\phi)$. It satisfies

$$k\frac{d\Gamma_k}{dk} = \frac{1}{2} \operatorname{Tr} \left(\frac{\delta^2 \Gamma_k}{\delta \phi \delta \phi} + R_k \right)^{-1} k \frac{dR_k}{dk}$$

[C. Wetterich, T. Morris]

Since $\lim_{k\to 0} \Gamma_k = \Gamma$, can use FRGE to calculate the EA. For gravity $\Gamma_k(h_{\mu\nu}, \bar{g}_{\mu\nu})$ Most work deals with

$$\Gamma_k(g_{\mu
u}) = \Gamma_k(0,g_{\mu
u})$$

[M. Reuter, Phys. Rev. D 57 971(1998)][D. Dou and R. Percacci, Class. and Quantum Grav. 15 3449 (1998)]

$$egin{aligned} &\Gamma_k(ar{g}_{\mu
u},h_{\mu
u}) = S_{EH}(ar{g}_{\mu
u}+h_{\mu
u}) + S_{GF}(ar{g}_{\mu
u},h_{\mu
u}) + S_{ghost}(ar{g}_{\mu
u},ar{C}^\mu,C_
u) \ &S_{EH}(g_{\mu
u}) = \int dx \sqrt{g}Z(2\Lambda-R) \ ; \quad Z = rac{1}{16\pi G} \end{aligned}$$

$$\beta_{\tilde{\Lambda}} = \frac{-2(1-2\tilde{\Lambda})^{2}\tilde{\Lambda} + \frac{36-41\tilde{\Lambda}+42\tilde{\Lambda}^{2}-600\tilde{\Lambda}^{3}}{72\pi}\tilde{G} + \frac{467-572\tilde{\Lambda}}{288\pi^{2}}\tilde{G}^{2}}{(1-2\tilde{\Lambda})^{2} - \frac{29-9\tilde{\Lambda}}{72\pi}\tilde{G}}$$
$$\beta_{\tilde{G}} = \frac{2(1-2\tilde{\Lambda})^{2}\tilde{G} - \frac{373-654\tilde{\Lambda}+600\tilde{\Lambda}^{2}}{72\pi}\tilde{G}^{2}}{(1-2\tilde{\Lambda})^{2} - \frac{29-9\tilde{\Lambda}}{72\pi}\tilde{G}}$$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
f(R) gravit	Y					

$$egin{aligned} \Gamma_k(g_{\mu
u}) &= \int d^4x \, \sqrt{g} f(R) \ f(R) &= \sum_{i=0}^n g_i(k) R^i \end{aligned}$$

n=6

A. Codello, R.P. and C. Rahmede Int.J.Mod.Phys.A23:143-150 arXiv:0705.1769 [hep-th]; n=8

A. Codello, R.P. and C. Rahmede Annals Phys. 324 414-469 (2009) arXiv: arXiv:0805.2909;

P.F. Machado, F. Saueressig, Phys. Rev. D arXiv: arXiv:0712.0445 [hep-th]

n=35

K. Falls, D.F. Litim, K. Nikolakopoulos, C. Rahmede, arXiv:1301.4191 [hep-th]

 $n=\infty$

Dario Benedetti, Francesco Caravelli, JHEP 1206 (2012) 017, Erratum-ibid. 1210 (2012) 157 arXiv:1204.3541 [hep-th]

Juergen A. Dietz, Tim R. Morris, JHEP 1301 (2013) 108 arXiv:1211.0955 [hep-th]

Dario Benedetti, arXiv:1301.4422 [hep-th]

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
f(R) GRAVIT	т ү <i>n</i> = 8					

n	\tilde{g}_{0*}	<i>Ĩ</i> 91∗	ĝ₂∗	\tilde{g}_{3*}	\tilde{g}_{4*}	\tilde{g}_{5*}	<i>ĝ</i> 6∗	Ĩg7∗	\tilde{g}_{8*}		
1	5.23	-20.1									
2	3.29	-12.7	1.51								
3	5.18	-19.6	0.70	-9.7							
4	5.06	-20.6	0.27	-11.0	-8.65						
5	5.07	-20.5	0.27	-9.7	-8.03	-3.35					
6	5.05	-20.8	0.14	-10.2	-9.57	-3.59	2.46				
7	5.04	-20.8	0.03	-9.78	-10.5	-6.05	3.42	5.91			
8	5.07	-20.7	0.09	-8.58	-8.93	-6.81	1.17	6.20	4.70		

Position of FixedPoint ($\times 10^{-3}$)

Critical exponents

n	$Re\vartheta_1$	Imϑ ₁	ϑ_2	ϑ_3	$Re\vartheta_4$	Im $artheta_4$	ϑ_6	ϑ_7	ϑ_8
1	2.38	2.17							
2	1.38	2.32	26.9						
3	2.71	2.27	2.07	-4.23					
4	2.86	2.45	1.55	-3.91	-5.22				
5	2.53	2.69	1.78	-4.36	-3.76	-4.88			
6	2.41	2.42	1.50	-4.11	-4.42	-5.98	-8.58		
7	2.51	2.44	1.24	-3.97	-4.57	-4.93	-7.57	-11.1	
8	2.41	2.54	1.40	-4.17	-3.52	-5.15	-7.46	-10.2	-12.3

Critical surface:

$$\begin{split} \tilde{g}_3 &= 0.00061243 + 0.06817374\,\tilde{g}_0 + 0.46351960\,\tilde{g}_1 + 0.89500872\,\tilde{g}_2 \\ \tilde{g}_4 &= -0.00916502 - 0.83651466\,\tilde{g}_0 - 0.20894019\,\tilde{g}_1 + 1.62075130\,\tilde{g}_2 \\ \tilde{g}_5 &= -0.01569175 - 1.23487788\,\tilde{g}_0 - 0.72544946\,\tilde{g}_1 + 1.01749695\,\tilde{g}_2 \\ \tilde{g}_6 &= -0.01271954 - 0.62264827\,\tilde{g}_0 - 0.82401181\,\tilde{g}_1 - 0.64680416\,\tilde{g}_2 \\ \tilde{g}_7 &= -0.00083040 + 0.81387198\,\tilde{g}_0 - 0.14843134\,\tilde{g}_1 - 2.01811163\,\tilde{g}_2 \\ \tilde{g}_8 &= 0.00905830 + 1.25429854\,\tilde{g}_0 + 0.50854002\,\tilde{g}_1 - 1.90116584\,\tilde{g}_2 \end{split}$$

Figure: Left: couplings Right: scaling exponents

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
f(R) GRAVI	Y n = 35					

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
	RONTIER					

- functional truncations
- split transformations

ERGE well suited to study flow of potential

$$\Gamma_k[\phi] = \int d^d x \left(V(\phi^2) + \frac{1}{2} (\partial \phi)^2 \right)$$

Successfully reproduces properties of many critical models.

Do not expand f(R) but write flow equation for f

$$\partial_t \tilde{f}(\tilde{R}) = \beta(\tilde{f}, \tilde{f}', \tilde{f}'', \tilde{f}''')$$

where $\tilde{R} = R/k^2$, $\tilde{f} = f/k^4$. For large \tilde{R} $\tilde{f}(\tilde{R}) = A\tilde{R}^2 \left(1 + \sum_{n>0} d_n \tilde{R}^{-n}\right)$

Dario Benedetti, Francesco Caravelli, JHEP 1206 (2012) 017, Erratum-ibid. 1210 (2012) 157 arXiv:1204.3541 [hep-th]

Juergen A. Dietz, Tim R. Morris, JHEP 1301 (2013) 108 arXiv:1211.0955 [hep-th]

Theorem 1:
$$\Gamma_*(g_{\mu\nu}) = A_* \int d^4x \sqrt{g} R^2$$
, $A_* \neq 0$

Theorem 2: if \tilde{f}_* exists, the spectrum of perturbations is discrete, real, and there are at most finitely many relevant direction.

D. Benedetti, arXiv:1301.4422 [hep-th]

Analytic and numerical solutions have been found. Situation not yet completely clarified.

[N. Ohta, R.P., G.P. Vacca, Eur. Phys. J. C (2016) 76:46 arXiv:1511.09393 [hep-th]]

Expand

$$\Gamma_{k}(h;\bar{g}) = \Gamma_{k}(0;\bar{g}) + \int \Gamma_{k}'(0;\bar{g})h + \int \Gamma_{k}''(0;\bar{g})h^{2} \\ + \int \Gamma_{k}'''(0;\bar{g})h^{3} + \int \Gamma_{k}'''(0;\bar{g})h^{4} + \dots$$

from FRGE obtain

$$\begin{split} \dot{\Gamma}_{k}(h;\bar{g}) &= \dot{\Gamma}_{k}(0;\bar{g}) + \int \dot{\Gamma}_{k}'(0;\bar{g})h + \int \dot{\Gamma}_{k}''(0;\bar{g})h^{2} \\ &+ \int \dot{\Gamma}_{k}'''(0;\bar{g})h^{3} + \int \dot{\Gamma}_{k}'''(0;\bar{g})h^{4} + \dots \end{split}$$

can read off beta functions.

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
VERTEX EXP	ANSION					

Flat space expansion. Flow extracted from 3- and 4-point functions. FP again present.

> [N. Christiansen, J. Pawlowski, A. Rodigast, Phys.Rev. D93 (2016) no.4, 044036 arXiv:1403.1232 [hep-th]]
> [N. Christiansen, B. Knorr, J. Meibohm, J. Pawlowski, M. Reichert, Phys.Rev. D92 (2015) no.12, 121501 arXiv:1506.07016 [hep-th]]

Because

$$\mathsf{S}=\mathsf{S}(g_{\mu
u})=\mathsf{S}(ar{g}_{\mu
u}+h_{\mu
u})$$

the bare action is invariant under

$$egin{array}{rcl} \delta oldsymbol{ar{g}}_{\mu
u} &=& \epsilon_{\mu
u} \;, \ \delta oldsymbol{h}_{\mu
u} &=& -\epsilon_{\mu
u} \;. \end{array}$$

but the EAA $\Gamma_k(\mathbf{h}; \bar{\mathbf{g}})$ is not.

$$\frac{\delta^{(n)} \Gamma_k(h; \bar{g})}{\delta h^n} \neq \frac{\delta^{(n)} \Gamma_k(h; \bar{g})}{\delta \bar{g}^n}$$

Expanding the Hilbert action

$${f S}(g)={f S}(ar g)+\int {f S}'(ar g)h+\int {f S}''(ar g)h^2+\int {f S}'''(ar g)h^3+\int {f S}''''(ar g)h^4+\dots$$

all contain the same Newton constant.

Due to violation of split symmetry each term of the expansion gives a different "beta function"

[T. Denz, J. Pawlowski and M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity arXiv:1612.07315 [hep-th]]

- Write the anomalous Ward identity for the split symmetry or a subgroup thereof
- Solve it to eliminate from the EAA a number of fields equal to the number of parameters of the transformation
- Write the flow equation for the EAA depending on the remaining variables

Carried through for $\epsilon_{\mu\nu} = \epsilon \bar{g}_{\mu\nu}$

[P. Labus, T.R. Morris, Z.H. Slade Phys.Rev. D94 (2016) no.2, 024007 arXiv:1603.04772 [hep-th]]
[T.R. Morris, JHEP 1611 (2016) 160 arXiv:1610.03081 [hep-th]]
[R.P., G.P. Vacca, Eur.Phys.J. C77 (2017) no.1, 52 arXiv:1611.07005 [hep-th]]

- Fixed point appears in all approximations tried so far
- Canonical dimension seems to be a reasonably good guide
- Some uncertainty on the number of relevant deformations
- Truly functional truncations can be studied, but are hard. (Less tolerant of bad approximations.)

but

- Use of background field method makes effective action depend on two fields.
- Pure gravity has no local observables.
- No reliable calculation of physical observable effect.

- because it's there
- gravitational scattering of matter less exotic than graviton scattering
- possible experimental constraints from known physics
- because it may help (large N limit)

Non-interacting matter:

[P. Donà, A. Eichhorn, R.P. arXiv:1311.2898 [hep-th](2013)]

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions			
PERTURBATIVE BETA FUNCTIONS WITH MATTER									

$$\begin{split} \beta_{\tilde{G}} &= 2\tilde{G} + \frac{\tilde{G}^2}{6\pi} \left(N_{\rm S} + 2N_D - 4N_V - 46 \right), \\ \beta_{\tilde{\Lambda}} &= -2\tilde{\Lambda} + \frac{\tilde{G}}{4\pi} \left(N_{\rm S} - 4N_D + 2N_V + 2 \right) \\ &+ \frac{\tilde{G}\tilde{\Lambda}}{6\pi} \left(N_{\rm S} + 2N_D - 4N_V - 16 \right) \end{split}$$

$$\begin{split} \tilde{\Lambda}_* &= -\frac{3}{4} \frac{N_S - 4N_D + 2N_V + 2}{N_S + 2N_D - 4N_V - 31} \; , \\ \tilde{G}_* &= -\frac{12\pi}{N_S + 2N_D - 4N_V - 46} \; . \end{split}$$

EXCLUSION PLOTS $N_{V} = 0.6.12.24.45$									

Asymptotic safety Gravity-EFT Gravity 1-loop ERGE Open issues Matter Conclusions
TRUNCATED FRGE, BIMETRIC FORMALISM

$$\begin{split} \Gamma_{k}(\bar{g},h) &= \frac{1}{16\pi G} \int d^{d}x \sqrt{\bar{g}} \left(-\bar{R}+2\Lambda\right) \\ &+ \frac{Z_{h}}{2} \int d^{d}x \sqrt{\bar{g}} h_{\mu\nu} \mathcal{K}^{\mu\nu\alpha\beta} ((-\bar{D}^{2}-2\Lambda)\mathbf{1}^{\rho\sigma}_{\alpha\beta}+W^{\rho\sigma}_{\alpha\beta})h_{\rho\sigma} \\ &- \sqrt{2}Z_{c} \int d^{d}x \sqrt{\bar{g}} \, \bar{c}_{\mu} \left(\bar{D}^{\rho} \bar{g}^{\mu\kappa} g_{\kappa\nu} D_{\rho}+\bar{D}^{\rho} \bar{g}^{\mu\kappa} g_{\rho\nu} D_{\kappa}-\bar{D}^{\mu} \bar{g}^{\rho\sigma} g_{\rho\nu} D_{\sigma}\right) c^{\nu} \end{split}$$

$$S_{S} = \frac{Z_{S}}{2} \int d^{d}x \sqrt{g} g^{\mu\nu} \sum_{i=1}^{N_{S}} \partial_{\mu} \phi^{i} \partial_{\nu} \phi^{i}$$

$$S_D = iZ_D \int d^d x \sqrt{g} \sum_{i=1}^{N_D} \bar{\psi}^i \nabla \psi^i,$$

$$S_V = \frac{Z_V}{4} \int d^d x \sqrt{g} \sum_{i=1}^{N_V} g^{\mu\nu} g^{\kappa\lambda} F^i_{\mu\kappa} F^i_{\nu\lambda} + \dots$$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
	NTRIBUTION	N TO η_h				

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
GRAVITON+	снозт со	NTRIBUTIONS	s то η_{C}			

0								
GRAVITON CONTRIBUTION TO MATTER η								

For $\Psi = h, c, S, D, V$,

$$\eta_{\Psi} = -\frac{1}{Z_{\Psi}}k\frac{dZ_{\Psi}}{dk}$$

$$\vec{\eta} = (\eta_h, \eta_c, \eta_S, \eta_D, \eta_V)$$

$$\vec{\eta} = \vec{\eta}_1(\tilde{G}, \tilde{\Lambda}) + \mathbf{A}(\tilde{G}, \tilde{\Lambda})\vec{\eta}$$

- one loop anomalous dimensions $\vec{\eta} = \vec{\eta}_1$
- RG improved anomalous dimensions $\vec{\eta} = (\mathbf{1} \mathbf{A})^{-1} \vec{\eta}_1$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
EXCLUSION		0				

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
_						

EXCLUSION PLOT $N_V = 12$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
STANDARD N	NODEL MAT	TER				

	1L-II	full-II	1L-la	full-la
$\tilde{\Lambda}_*$	-2.399	-2.348	-3.591	-3.504
$ ilde{G}_*$	1.762	1.735	2.627	2.580
θ_1	3.961	3.922	3.964	3.919
θ_2	1.644	1.651	2.178	2.187
η_h	2.983	2.914	4.434	4.319
η_{c}	-0.139	-0.129	-0.137	-0.125
η_{S}	-0.076	-0.072	-0.076	-0.073
η_{D}	-0.015	0.004	-0.004	0.016
η_V	-0.133	-0.145	-0.144	-0.158

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
SPECIFIC MO	DDELS					

model	N _S	N_D	N_V	$ ilde{G}_*$	$\tilde{\Lambda}_{*}$	θ_1	θ_2	η_{h}
no matter	0	0	0	0.77	0.01	3.30	1.95	0.27
SM	4	45/2	12	1.76	-2.40	3.96	1.64	2.98
SM +dm scalar	5	45/2	12	1.87	-2.50	3.96	1.63	3.15
SM+3 ν's	4	24	12	2.15	-3.20	3.97	1.65	3.71
SM+3 <i>v</i> 's								
+ axion+dm	6	24	12	2.50	-3.62	3.96	1.63	4.28
MSSM	49	61/2	12	-	-	-	-	-
SU(5) GUT	124	24	24	-	-	-	-	-
SO(10) GUT	97	24	45	-	-	-	-	-

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions		
EXCLUSION PLOT $N_V = 12$, $d = 5$								

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
Exclusion						

Can AF matter coexist with AS gravity?

Conjecture:

- Interactions respecting the global symmetries of the kinetic term will have non-zero couplings at a FP.
- Interactions that violate the symmetries of the kinetic term could have a fixed point at zero coupling.

[A. Eichhorn and A. Held, (2017), arXiv:1705.02342 [gr-qc].]

Confirmed in several cases of scalar, fermion and vector (F^4) interactions.

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
GRAVITY						

$$\Gamma_{k}[g,\phi] = \int d^{d}x \sqrt{g} \left(V(\phi^{2}) - F(\phi^{2})R + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi \right)$$

[G. Narain, R.P., Class. and Quantum Grav. 27, 075001 (2010)]
[T. Henz, J. Pawlowski, A. Rodigast, C. Wetterich, Phys. Lett. B727 (2013) 298]
[D. Benedetti and F. Guarnieri, New J. of Phys. (2014) 053051]
[R.P., G.P. Vacca, Eur.Phys.J. C75 (2015) 5, 188, arXiv:1501.00888 [hep-th]]

$$\begin{split} \tilde{V}(\tilde{\phi}^2) &= \tilde{\lambda}_0 + \tilde{\lambda}_2 \tilde{\phi}^2 + \tilde{\lambda}_4 \tilde{\phi}^4 + \dots \\ \tilde{F}(\tilde{\phi}^2) &= \tilde{\xi}_0 + \tilde{\xi}_2 \tilde{\phi}^2 + \dots \end{split}$$

Only "Gaussian matter fixed point", in accordance with general expectation.

R.P., G.P. Vacca, Eur.Phys.J. C75 (2015) 5, 188, arXiv:1501.00888 [hep-th]

$$\dot{v} = -3 v + \frac{1}{2} \phi v' + \frac{f + 4f'^2}{6\pi^2 (4f'^2 + f(1 + v''))} + O(\dot{f})$$

$$\dot{f} = -f + \frac{1}{2} \phi f' + \frac{25}{36\pi^2} + f \frac{(f + 4f'^2)(1 + 3v'' - 2f'') + 2fv''^2}{12\pi^2 (4f'^2 + f(1 + v''))^2} + O(\dot{f})$$

Compare with equation for pure scalar in LPA

$$\dot{
u} = -3 \,
u + rac{1}{2} \phi \,
u' + rac{1}{6 \pi^2 (1 +
u'')}$$

GRAVITATIONALLY DRESSED WILSON-FISHER FIXED POINT

Figure: Solid curve: potential with gravity; dashed curve: LPA approximation of potential of Wilson-Fisher fixed point without gravity.

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions

FLOW EQUATIONS d = 4

$$\dot{v} = -4 v + \varphi v' + \frac{1}{16\pi^2} + \frac{f + 3f'^2}{32\pi^2 (3f'^2 + f(1 + v''))} + O(\dot{f})$$

$$\dot{f} = -2f + \varphi f' + \frac{37}{384\pi^2} + f \frac{(f + 3f'^2)(1 - 3f'' + 3v'') + 2fv''^2}{96\pi^2 (3f'^2 + f(1 + v''))^2} + O(\dot{f})$$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
ANALYTIC S		d = 4 <i>N</i> = 1				

FP1

$$v_* = rac{3}{128\pi^2} pprox 0.00237$$
 ; $f_* = rac{41}{768\pi^2} pprox 0.00541$ FP2

 $v_* = \frac{3}{128\pi^2} \approx 0.00237$; $f_* = \frac{37}{768\pi^2} + \frac{1}{6}\varphi^2 \approx 0.0049 + 0.167\varphi^2$ FP3

$$v_*=rac{3}{128\pi^2}pprox 0.002374$$
 ; $f_*=-rac{41}{420\pi^2}arphi^2pprox -0.0976arphi^2$

Analytic solutions of functional equations known for $d < d_{max}$ and $N < N_{max}$.

All quadratic in φ except candidate Wilson-Fisher FP for N = 2.

[P. Labus, R.P., G.P. Vacca, Phys.Lett. B753 (2016) 274-281 arXiv:1505.05393 [hep-th]]

$$V(\phi^2) = \lambda_0 + \lambda_2 \phi^2 + \lambda_4 \phi^4 + \dots$$

$$F(\phi^2) = \xi_0 + \xi_2 \phi^2 + \dots$$

$$\partial_t \lambda_4 = \frac{9\lambda_4^2}{2\pi^2} + \frac{\tilde{G}\lambda_4}{\pi} + \dots$$

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
PREDICTION	OF THE HI	GGS MASS				

[M. Shaposhnikov and C. Wetterich, Phys.Lett. B683, 196 (2010)]

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions

[A. Eichhorn and A. Held, arXiv:1707.01107 [hep-th]]

POSSIBLE CALCULATION OF FINE STRUCTURE CONSTANT

$\alpha - \alpha_*$ irrelevant at NGFP2.

[U. Harst and M. Reuter, JHEP 1105, 119 (2011), arXiv:1101.6007 [hep-th]]

[A. Eichhorn and F. Versteegen, arXiv:1709.07252 [hep-th]]

[A. Eichhorn, A. Held and C. Wetterich, arXiv:1711.02949 [hep-th]]

Asyn	nptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
Co	ONTINUUM,	COVARIANT	T APPROACH	то QG			

Extrapolation to infinite energy used as a principle to select theories \implies predictivity.

- use powerful QFT tools
- bottom up approach ⇒ guaranteed to give correct low energy limit
- highly predictive: only few parameters undetermined
- inclusion of matter relatively easy
- particle physics constrained

but

- strong coupling
- parametrization/gauge/scheme dependence
- no robust calculation of physical observable yet

Asymptotic safety	Gravity-EFT	Gravity 1-loop	ERGE	Open issues	Matter	Conclusions
FINAL COM	MENTS					

AS, QFT for gravity, FRGE all independent notions.

In gravity other techniques could play a role:

- ϵ expansion
- large N expansion
- two loop calculations
- generalization of CFT techniques