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Motivation

Why do we need to the strong interaction on a lattice?

In the Standard Model, the phenomenology of the strong interactions arises from
the mathematical properties of quantum chromodynamics (QCD), a non-Abelian
gauge theory which is not broken

The QCD β-function implies that the strong interactions can be treated
perturbatively for large transferred momenta

Conversely, the physical αs coupling becomes large at low energies

The spectrum of the lightest hadronic states is determined by phenomena of
non-perturbative nature:
F Confinement of colored elementary degrees of freedom into color-singlet states
F Dynamical breaking of chiral symmetry

The regularization on a spacetime lattice [K. G. Wilson, 1974] provides the
mathematically rigorous, gauge-invariant definition of QCD at the
non-perturbative level

http://inspirehep.net/search?p=Wilson:1974sk
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Basic ideas

Regularize the path integrals by discretizing the theory on a Euclidean spacetime
lattice of spacing a

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice
action SE and lattice observables

The continuum Euclidean QCD action is recovered for a→ 0

SE =

∫
d4x

{
1

2
Tr (FµνFµν) +

∑
f

ψf (x) (γµDµ + mf )ψf (x)

}
· [1 + O(a)]

A gauge-invariant, non-perturbative regularization

Suitable for Monte Carlo integration: sample configuration space according to a
statistical weight proportional to exp(−SE), compute expectation values



Lattice approach to QFT

Quantum field theory on a lattice

Basic ideas

Regularize the path integrals by discretizing the theory on a Euclidean spacetime
lattice of spacing a

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice
action SE and lattice observables
The continuum Euclidean QCD action is recovered for a→ 0

SE =

∫
d4x

{
1

2
Tr (FµνFµν) +

∑
f

ψf (x) (γµDµ + mf )ψf (x)

}
· [1 + O(a)]

A gauge-invariant, non-perturbative regularization
Suitable for Monte Carlo integration: sample configuration space according to a
statistical weight proportional to exp(−SE), compute expectation values



Lattice approach to QFT

Quantum field theory on a lattice

Basic ideas

Regularize the path integrals by discretizing the theory on a Euclidean spacetime
lattice of spacing a

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice
action SE and lattice observables
The continuum Euclidean QCD action is recovered for a→ 0

SE =

∫
d4x

{
1

2
Tr (FµνFµν) +

∑
f

ψf (x) (γµDµ + mf )ψf (x)

}
· [1 + O(a)]

A gauge-invariant, non-perturbative regularization
Suitable for Monte Carlo integration: sample configuration space according to a
statistical weight proportional to exp(−SE), compute expectation values



Lattice approach to QFT

Quantum field theory on a lattice

Basic ideas

Regularize the path integrals by discretizing the theory on a Euclidean spacetime
lattice of spacing a

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice
action SE and lattice observables
The continuum Euclidean QCD action is recovered for a→ 0

SE =

∫
d4x

{
1

2
Tr (FµνFµν) +

∑
f

ψf (x) (γµDµ + mf )ψf (x)

}
· [1 + O(a)]

A gauge-invariant, non-perturbative regularization
Suitable for Monte Carlo integration: sample configuration space according to a
statistical weight proportional to exp(−SE), compute expectation values



Lattice approach to QFT

Quantum field theory on a lattice

Basic ideas

Regularize the path integrals by discretizing the theory on a Euclidean spacetime
lattice of spacing a

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice
action SE and lattice observables

SE = −
1

g2

∑
x

∑
µ,ν

Tr
(
Uµ(x)Uν(x + aµ̂)U†µ(x + aν̂)U†ν(x)

)
+
∑
x,y,f

a4ψf (x)M f
x,yψf (y)

M f
x,y = mδx,y −

1

2a

∑
µ

[
(r − γµ)Uµ(x)δx+aµ̂,y + (r + γµ)U†µ(y)δx−aµ̂,y

]
The continuum Euclidean QCD action is recovered for a→ 0

SE =

∫
d4x

{
1

2
Tr (FµνFµν) +

∑
f

ψf (x) (γµDµ + mf )ψf (x)

}
· [1 + O(a)]

A gauge-invariant, non-perturbative regularization

Suitable for Monte Carlo integration: sample configuration space according to a
statistical weight proportional to exp(−SE), compute expectation values



Lattice approach to QFT

Quantum field theory on a lattice

Basic ideas

Regularize the path integrals by discretizing the theory on a Euclidean spacetime
lattice of spacing a

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice
action SE and lattice observables

The continuum Euclidean QCD action is recovered for a→ 0

SE =

∫
d4x

{
1

2
Tr (FµνFµν) +

∑
f

ψf (x) (γµDµ + mf )ψf (x)

}
· [1 + O(a)]

A gauge-invariant, non-perturbative regularization

Suitable for Monte Carlo integration: sample configuration space according to a
statistical weight proportional to exp(−SE), compute expectation values



Lattice approach to QFT

Quantum field theory on a lattice

Basic ideas

Regularize the path integrals by discretizing the theory on a Euclidean spacetime
lattice of spacing a

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice
action SE and lattice observables

The continuum Euclidean QCD action is recovered for a→ 0

SE =

∫
d4x

{
1

2
Tr (FµνFµν) +

∑
f

ψf (x) (γµDµ + mf )ψf (x)

}
· [1 + O(a)]

A gauge-invariant, non-perturbative regularization

Suitable for Monte Carlo integration: sample configuration space according to a
statistical weight proportional to exp(−SE), compute expectation values



Lattice approach to QFT

Quantum field theory on a lattice

Basic ideas

Regularize the path integrals by discretizing the theory on a Euclidean spacetime
lattice of spacing a

Define gauge and matter fields on lattice elements, build a gauge-invariant lattice
action SE and lattice observables

The continuum Euclidean QCD action is recovered for a→ 0

SE =

∫
d4x

{
1

2
Tr (FµνFµν) +

∑
f

ψf (x) (γµDµ + mf )ψf (x)

}
· [1 + O(a)]

A gauge-invariant, non-perturbative regularization

Suitable for Monte Carlo integration: sample configuration space according to a
statistical weight proportional to exp(−SE), compute expectation values

〈O〉 =

∫ ∏
dψ(x)dψ(x)

∏
dUµ(x)O exp(−SE)∫ ∏

dψ(x)dψ(x)
∏

dUµ(x) exp(−SE)

=

∫ ∏
dUµ(x)O

(∏
f detM f

)
exp(−SYM

E )∫ ∏
dUµ(x)

(∏
f detM f

)
exp(−SYM

E )



Lattice approach to QFT

Quantum field theory on a lattice

Observations

The lattice introduces a finite momentum cutoff O(1/a)

Gauge invariance is explicitly preserved at all a

At finite a, Lorentz-Poincaré symmetries are broken down to discrete subgroups

The lattice spacing a has no physical meaning: physical results obtained only in
the continumm limit a→ 0

At the quantum level, the continuum theory is a good low-energy effective theory
for the lattice theory

Required separation of scales:

1/L� Λ� 1/a,

with L the linear extent of the lattice and Λ the scale of phenomena under
consideration

Euclidean formulation: Monte Carlo estimate of 〈O〉 made possible by a real
positive statistical weight proportional to exp(−SE)
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Quantum field theory on a lattice

Scale setting

What is the value of a, for a given set of parameters of the lattice theory?

Scale setting: match a low-energy lattice observable to its continuum value
F Example in purely gluonic SU(N) Yang-Mills theory: confining static potential from

large Wilson loops W(r , L)

〈W(r , L)〉 ∝ exp (−σrL) = exp

(
−σa2 ·

r

a
·
L

a

)
F Fit σa2 from simulation results
F Deduce a using σ = (440MeV)2 and 197 MeV ' 1 fm−1

Extrapolation to the continuum limit a→ 0 is possible in the presence of a
continuous phase transition of the lattice theory

The physical values of the other parameters of the lattice theory can be set in a
similar way
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Debunking some common misconceptions

“Lattice QCD is only an approximation of QCD”

“The results depend on the details of your discretization”

“You can never recover the correct rotational and translational symmetries of the
original continuum theory”

“You always have undesired additional quark species (doublers)”

“It only works / it is only defined at strong coupling”

“It is numerically untractable: you can never be able to deal with those large
Dirac operators / you are bound to neglect quark dynamics (quenched
approximation)”
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A selection of results

Hadron spectrum

The calculation of the hadron spectrum from the first principles of QCD has always
been a major motivation for lattice studies
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Compilation of lattice results for the hadron spectrum obtained by various
collaborations, adapted from [A. Kronfeld, 2012]. Open symbols denote the masses
used to set the lattice parameters. Horizontal bars denote experimental masses, and
gray boxes indicate experimental widths

http://inspirehep.net/search?p=Kronfeld:2012uk
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QCD running coupling

Lattice calculations allow to compute the αs = g2
s /(4π) running coupling over a broad

range of transferred momenta µ, from the perturbative down to the hadronic regime
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Lattice results for αs from the ALPHA Collaboration [M. Bruno et al., 2017]

https://inspirehep.net/search?p=find+eprint+1706.03821
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Chiral dynamics and light-quark masses

Because of color confinement, quark masses are not directly accessible to
experiments

For the lightest quark flavors (u, d , and possibly s), the highly non-trivial,
strongly coupled dynamics of QCD at low energies implies that the origin of
hadron masses is not from the constituent (valence) quark masses

Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides
an elegant description of the low-energy physics of QCD with nf (nearly) massless
quark flavors, in terms of its (approximate) global chiral symmetry

A low-energy effective theory, encoding the non-trivial dynamics of microscopic
origin into an infinite set of low-energy constants: Σ (quark condensate), F
(“pion” decay constant), . . .

These constants can be directly related to the masses of quarks and of hadrons,
e.g. m2

πF
2 = (mu + md )〈qq〉 [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]

Lattice calculations of these low-energy constants allow to determine the light
quark masses [S. Aoki et al., 2013]

mu + md

2
= (3.42± 0.06stat ± 0.07sys) MeV

http://inspirehep.net/record/133288?ln=en
http://inspirehep.net/record/194037?ln=en
http://inspirehep.net/search?ln=en&p=GellMann:1968rz
https://inspirehep.net/search?p=find+eprint+1310.8555


Lattice approach to QFT

A selection of results

Chiral dynamics and light-quark masses

Because of color confinement, quark masses are not directly accessible to
experiments

For the lightest quark flavors (u, d , and possibly s), the highly non-trivial,
strongly coupled dynamics of QCD at low energies implies that the origin of
hadron masses is not from the constituent (valence) quark masses

Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides
an elegant description of the low-energy physics of QCD with nf (nearly) massless
quark flavors, in terms of its (approximate) global chiral symmetry

A low-energy effective theory, encoding the non-trivial dynamics of microscopic
origin into an infinite set of low-energy constants: Σ (quark condensate), F
(“pion” decay constant), . . .

These constants can be directly related to the masses of quarks and of hadrons,
e.g. m2

πF
2 = (mu + md )〈qq〉 [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]

Lattice calculations of these low-energy constants allow to determine the light
quark masses [S. Aoki et al., 2013]

mu + md

2
= (3.42± 0.06stat ± 0.07sys) MeV

http://inspirehep.net/record/133288?ln=en
http://inspirehep.net/record/194037?ln=en
http://inspirehep.net/search?ln=en&p=GellMann:1968rz
https://inspirehep.net/search?p=find+eprint+1310.8555


Lattice approach to QFT

A selection of results

Chiral dynamics and light-quark masses

Because of color confinement, quark masses are not directly accessible to
experiments

For the lightest quark flavors (u, d , and possibly s), the highly non-trivial,
strongly coupled dynamics of QCD at low energies implies that the origin of
hadron masses is not from the constituent (valence) quark masses

Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides
an elegant description of the low-energy physics of QCD with nf (nearly) massless
quark flavors, in terms of its (approximate) global chiral symmetry

A low-energy effective theory, encoding the non-trivial dynamics of microscopic
origin into an infinite set of low-energy constants: Σ (quark condensate), F
(“pion” decay constant), . . .

These constants can be directly related to the masses of quarks and of hadrons,
e.g. m2

πF
2 = (mu + md )〈qq〉 [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]

Lattice calculations of these low-energy constants allow to determine the light
quark masses [S. Aoki et al., 2013]

mu + md

2
= (3.42± 0.06stat ± 0.07sys) MeV

http://inspirehep.net/record/133288?ln=en
http://inspirehep.net/record/194037?ln=en
http://inspirehep.net/search?ln=en&p=GellMann:1968rz
https://inspirehep.net/search?p=find+eprint+1310.8555


Lattice approach to QFT

A selection of results

Chiral dynamics and light-quark masses

Because of color confinement, quark masses are not directly accessible to
experiments

For the lightest quark flavors (u, d , and possibly s), the highly non-trivial,
strongly coupled dynamics of QCD at low energies implies that the origin of
hadron masses is not from the constituent (valence) quark masses

Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides
an elegant description of the low-energy physics of QCD with nf (nearly) massless
quark flavors, in terms of its (approximate) global chiral symmetry

A low-energy effective theory, encoding the non-trivial dynamics of microscopic
origin into an infinite set of low-energy constants: Σ (quark condensate), F
(“pion” decay constant), . . .

These constants can be directly related to the masses of quarks and of hadrons,
e.g. m2

πF
2 = (mu + md )〈qq〉 [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]

Lattice calculations of these low-energy constants allow to determine the light
quark masses [S. Aoki et al., 2013]

mu + md

2
= (3.42± 0.06stat ± 0.07sys) MeV

http://inspirehep.net/record/133288?ln=en
http://inspirehep.net/record/194037?ln=en
http://inspirehep.net/search?ln=en&p=GellMann:1968rz
https://inspirehep.net/search?p=find+eprint+1310.8555


Lattice approach to QFT

A selection of results

Chiral dynamics and light-quark masses

Because of color confinement, quark masses are not directly accessible to
experiments

For the lightest quark flavors (u, d , and possibly s), the highly non-trivial,
strongly coupled dynamics of QCD at low energies implies that the origin of
hadron masses is not from the constituent (valence) quark masses

Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides
an elegant description of the low-energy physics of QCD with nf (nearly) massless
quark flavors, in terms of its (approximate) global chiral symmetry

A low-energy effective theory, encoding the non-trivial dynamics of microscopic
origin into an infinite set of low-energy constants: Σ (quark condensate), F
(“pion” decay constant), . . .

These constants can be directly related to the masses of quarks and of hadrons,
e.g. m2

πF
2 = (mu + md )〈qq〉 [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]

Lattice calculations of these low-energy constants allow to determine the light
quark masses [S. Aoki et al., 2013]

mu + md

2
= (3.42± 0.06stat ± 0.07sys) MeV

http://inspirehep.net/record/133288?ln=en
http://inspirehep.net/record/194037?ln=en
http://inspirehep.net/search?ln=en&p=GellMann:1968rz
https://inspirehep.net/search?p=find+eprint+1310.8555


Lattice approach to QFT

A selection of results

Chiral dynamics and light-quark masses

Because of color confinement, quark masses are not directly accessible to
experiments

For the lightest quark flavors (u, d , and possibly s), the highly non-trivial,
strongly coupled dynamics of QCD at low energies implies that the origin of
hadron masses is not from the constituent (valence) quark masses

Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides
an elegant description of the low-energy physics of QCD with nf (nearly) massless
quark flavors, in terms of its (approximate) global chiral symmetry

A low-energy effective theory, encoding the non-trivial dynamics of microscopic
origin into an infinite set of low-energy constants: Σ (quark condensate), F
(“pion” decay constant), . . .

These constants can be directly related to the masses of quarks and of hadrons,
e.g. m2

πF
2 = (mu + md )〈qq〉 [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]

Lattice calculations of these low-energy constants allow to determine the light
quark masses [S. Aoki et al., 2013]

mu + md

2
= (3.42± 0.06stat ± 0.07sys) MeV

http://inspirehep.net/record/133288?ln=en
http://inspirehep.net/record/194037?ln=en
http://inspirehep.net/search?ln=en&p=GellMann:1968rz
https://inspirehep.net/search?p=find+eprint+1310.8555


Lattice approach to QFT

A selection of results

Heavy quarks

Lattice studies of heavy quark flavors (c and b) are often based on heavy-quark
effective theories, or on expansions around the non-relativistic limit

Quantities of particular phenomenological interest include the spectrum of
charmonium (cc) states

Semileptonic decays of B and D mesons (e.g. B → πlν l ), providing information
on elements of the Cabibbo-Kobayashi-Maskawa, can be studied on the lattice by
means of matrix elements of appropriate currents between the desired initial and
final states, e.g. 〈π(p)|Vµ(q)|B(pB)〉 [J. Laiho, E. Lunghi, and R. S. Van de Water,

2009]

https://inspirehep.net/search?p=find+eprint+0910.2928
https://inspirehep.net/search?p=find+eprint+0910.2928
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Heavy quarks
Lattice studies of heavy quark flavors (c and b) are often based on heavy-quark
effective theories, or on expansions around the non-relativistic limit
Quantities of particular phenomenological interest include the spectrum of
charmonium (cc) states

Charmonium spectrum from a lattice calculation by the Hadron Spectrum
Collaboration [L. Liu et al., 2012], showing the differences with respect to the
ground-state ηc mass, whose experimental value is Mηc = 2983.6± 0.7 MeV
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Semileptonic decays of B and D mesons (e.g. B → πlν l ), providing information
on elements of the Cabibbo-Kobayashi-Maskawa, can be studied on the lattice by
means of matrix elements of appropriate currents between the desired initial and
final states, e.g. 〈π(p)|Vµ(q)|B(pB)〉 [J. Laiho, E. Lunghi, and R. S. Van de Water,

2009]

https://inspirehep.net/search?p=find+eprint+1204.5425
https://inspirehep.net/search?p=find+eprint+0910.2928
https://inspirehep.net/search?p=find+eprint+0910.2928
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A selection of results

QCD at high temperature

At temperatures T & 160 MeV, ordinary hadronic matter undergoes a crossover
to a deconfined and chirally restored phase: the quark-gluon plasma

Lattice results for equilibrium-thermodynamics quantities are consistent with the
expected behavior in the low- and high-temperature limits, and interpolate
smoothly between them

The 〈qq〉 quark condensate is found to drop with the temperature, in agreement
with the restoration of SUA(nf ) symmetry [S. Borsányi et al., 2010] [A. Bazavov et

al., 2011]

Fluctuations of conserved charges (baryon number B, electric charge Q,
strangeness S), relevant for freeze-out conditions realized in heavy-ion collision
experiments [F. Karsch, 2012], are also studied [S. Borsányi et al., 2011] [A. Bazavov

et al., 2012] [S. Borsányi et al., 2014]

Dissociation of quarkonium states [G. Aarts et al., 2014] provides a quark-gluon
plasma “thermometer” [T. Matsui and H. Satz, 1986]

http://inspirehep.net/search?p=Borsanyi:2010bp
http://inspirehep.net/search?p=Bazavov:2011nk
http://inspirehep.net/search?p=Bazavov:2011nk
http://inspirehep.net/search?p=Karsch:2012wm
http://inspirehep.net/search?p=Borsanyi:2011sw
http://inspirehep.net/search?p=Bazavov:2012jq
http://inspirehep.net/search?p=Bazavov:2012jq
http://inspirehep.net/search?p=Borsanyi:2014ewa
http://inspirehep.net/search?p=Aarts:2014cda
http://inspirehep.net/search?p=Matsui:1986dk
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Main features:
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Nuclear physics from lattice QCD

Recent works are studying (light) nuclei with lattice QCD [M. J. Savage, 2011]

Numerically very challenging calculations

A no-go theorem forbids a direct extraction of hadronic S-matrix elements in
infinite Euclidean spacetime [L. Maiani and M. Testa, 1990]

Lattice calculations evade this theorem by relating elastic scattering amplitudes
to the particles’ energy dependence on the finite lattice volume [M. Lüscher, 1990]

The binding energies of nuclear bound states are also being investigated

https://inspirehep.net/search?p=find+eprint+1110.5943
https://inspirehep.net/record/304984?ln=en
https://inspirehep.net/record/300613?ln=en


Lattice approach to QFT

A selection of results

Nuclear physics from lattice QCD

Recent works are studying (light) nuclei with lattice QCD [M. J. Savage, 2011]

Numerically very challenging calculations

A no-go theorem forbids a direct extraction of hadronic S-matrix elements in
infinite Euclidean spacetime [L. Maiani and M. Testa, 1990]

Lattice calculations evade this theorem by relating elastic scattering amplitudes
to the particles’ energy dependence on the finite lattice volume [M. Lüscher, 1990]
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rigorous gauge-invariant, non-perturbative definition of QCD

The continuum QCD arises as a low-energy effective description of the lattice
theory, in the limit in which the (unphysical) lattice cutoff O(1/a) is sent to
infinity

Monte Carlo calculations on the lattice are now at a mature stage of
development, and are providing first-principle QCD predictions for many physical
quantities of experimental relevance

Lattice calculations are also being generalized to challenging non-perturbative
problems for physics beyond QCD

Some important problems, however, are still unsolved—and waiting for your
involvement
F “Sign problem” for QCD at finite baryon density
F Real-time dynamics from the lattice
F Theoretical formulation of chiral non-Abelian gauge theories (e.g. the electroweak
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Thanks for your attention!


	Main Part
	Motivation
	Quantum field theory on a lattice
	A selection of results
	Conclusions


