An overview of the lattice approach to strongly coupled quantum field theory

Marco Panero

University of Turin and INFN, Turin, Italy

Problemi Attuali di Fisica Teorica 2018 24.-28.03.2018, Vietri sul Mare, Italy

Outline

- Motivation
- 2 Quantum field theory on a lattice
- A selection of results
- Conclusions

Outline

- Motivation
- Quantum field theory on a lattice
- A selection of results
- Conclusions

- What is this?
- The picture above, based on quark-model intuition, is actually a misleading one
- A more accurate cartoon of the proton would look like this
- The proton is radically different from positronium

What is this?

- The picture above, based on quark-model intuition, is actually a misleading one
- A more accurate cartoon of the proton would look like this
- The proton is radically different from positronium

What is this?

- The picture above, based on quark-model intuition, is actually a misleading one
- A more accurate cartoon of the proton would look like this
- The proton is radically different from positronium

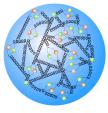
• What is this?

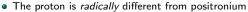
- The picture above, based on quark-model intuition, is actually a misleading one
- A more accurate cartoon of the proton would look like this



• What is this?

- The picture above, based on quark-model intuition, is actually a misleading one
- A more accurate cartoon of the proton would look like this





- In the Standard Model, the phenomenology of the strong interactions arises from the mathematical properties of quantum chromodynamics (QCD), a non-Abelian gauge theory which is not broken

- In the Standard Model, the phenomenology of the strong interactions arises from the mathematical properties of quantum chromodynamics (QCD), a non-Abelian gauge theory which is not broken
- \bullet The QCD $\beta\text{-function}$ implies that the strong interactions can be treated perturbatively for large transferred momenta
- ullet Conversely, the physical $lpha_{
 m s}$ coupling becomes large at low energies
- The spectrum of the lightest hadronic states is determined by phenomena of non-perturbative nature:
- The regularization on a spacetime lattice [K. G. Wilson, 1974] provides the mathematically rigorous, gauge-invariant definition of QCD at the

- In the Standard Model, the phenomenology of the strong interactions arises from the mathematical properties of quantum chromodynamics (QCD), a non-Abelian gauge theory which is *not* broken
- \bullet The QCD $\beta\text{-function}$ implies that the strong interactions can be treated perturbatively for large transferred momenta
- ullet Conversely, the physical $lpha_{
 m s}$ coupling becomes large at low energies
- The spectrum of the lightest hadronic states is determined by phenomena of non-perturbative nature:
- The regularization on a spacetime lattice [K. G. Wilson, 1974] provides the mathematically rigorous, gauge-invariant definition of QCD at the

- In the Standard Model, the phenomenology of the strong interactions arises from the mathematical properties of quantum chromodynamics (QCD), a non-Abelian gauge theory which is *not* broken
- ullet The QCD eta-function implies that the strong interactions can be treated perturbatively for large transferred momenta
- ullet Conversely, the physical $lpha_{
 m s}$ coupling becomes large at low energies
- The spectrum of the lightest hadronic states is determined by phenomena of non-perturbative nature:
 - ★ Confinement of colored elementary degrees of freedom into color-singlet states
 - ★ Dynamical breaking of chiral symmetry
- The regularization on a spacetime lattice [K. G. Wilson, 1974] provides the mathematically rigorous, gauge-invariant definition of QCD at the non-perturbative level

- In the Standard Model, the phenomenology of the strong interactions arises from the mathematical properties of quantum chromodynamics (QCD), a non-Abelian gauge theory which is *not* broken
- ullet The QCD eta-function implies that the strong interactions can be treated perturbatively for large transferred momenta
- ullet Conversely, the physical $\alpha_{\rm s}$ coupling becomes large at low energies
- The spectrum of the lightest hadronic states is determined by phenomena of non-perturbative nature:
 - ★ Confinement of colored elementary degrees of freedom into color-singlet states
 ★ Dynamical breaking of chiral symmetry
- The regularization on a spacetime lattice [K. G. Wilson, 1974] provides the mathematically rigorous, gauge-invariant definition of QCD at the non-perturbative level

- In the Standard Model, the phenomenology of the strong interactions arises from the mathematical properties of quantum chromodynamics (QCD), a non-Abelian gauge theory which is *not* broken
- ullet The QCD eta-function implies that the strong interactions can be treated perturbatively for large transferred momenta
- ullet Conversely, the physical $lpha_{
 m s}$ coupling becomes large at low energies
- The spectrum of the lightest hadronic states is determined by phenomena of non-perturbative nature:
 - ★ Confinement of colored elementary degrees of freedom into color-singlet states
 - ★ Dynamical breaking of chiral symmetry
- The regularization on a spacetime lattice [K. G. Wilson, 1974] provides the mathematically rigorous, gauge-invariant definition of QCD at the non-perturbative level

- In the Standard Model, the phenomenology of the strong interactions arises from the mathematical properties of quantum chromodynamics (QCD), a non-Abelian gauge theory which is not broken
- ullet The QCD eta-function implies that the strong interactions can be treated perturbatively for large transferred momenta
- ullet Conversely, the physical $lpha_{
 m s}$ coupling becomes large at low energies
- The spectrum of the lightest hadronic states is determined by phenomena of non-perturbative nature:
 - ★ Confinement of colored elementary degrees of freedom into color-singlet states
 - ★ Dynamical breaking of chiral symmetry
- The regularization on a spacetime lattice [K. G. Wilson, 1974] provides the mathematically rigorous, gauge-invariant definition of QCD at the non-perturbative level

Outline

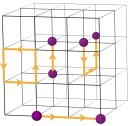
- Motivation
- Quantum field theory on a lattice
- A selection of results
- Conclusions

- ullet Regularize the path integrals by discretizing the theory on a Euclidean spacetime lattice of spacing a
- Define gauge and matter fields on lattice elements, build a gauge-invariant lattice action S_E and lattice observables
- ullet The continuum Euclidean QCD action is recovered for a o 0

$$S_{\mathsf{E}} = \int \mathrm{d}^4 x \left\{ rac{1}{2} \mathrm{Tr} \left(F_{\mu
u} F_{\mu
u}
ight) + \sum_f \overline{\psi}_f(x) \left(\gamma_\mu D_\mu + m_f
ight) \psi_f(x)
ight\} \cdot \left[1 + \mathcal{O}(a)
ight]$$

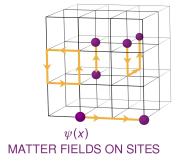
- A gauge-invariant, non-perturbative regularization
- Suitable for Monte Carlo integration: sample configuration space according to a statistical weight proportional to $\exp(-S_E)$, compute expectation values

 Regularize the path integrals by discretizing the theory on a Euclidean spacetime lattice of spacing a



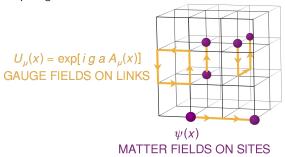
$$S_{\rm E} = \int {\rm d}^4 x \left\{ \frac{1}{2} {\rm Tr} \left(F_{\mu\nu} F_{\mu\nu} \right) + \sum_f \overline{\psi}_f(x) \left(\gamma_\mu D_\mu + m_f \right) \psi_f(x) \right\} \cdot [1 + (\sqrt{2} + \sqrt{2} + \sqrt{2}$$

 Regularize the path integrals by discretizing the theory on a Euclidean spacetime lattice of spacing a



$$S_{\rm E} = \int {\rm d}^4 {\bf x} \left\{ \frac{1}{2} {\rm Tr} \left(F_{\mu\nu} F_{\mu\nu} \right) + \sum_f \overline{\psi}_f({\bf x}) \left(\gamma_\mu D_\mu + m_f \right) \psi_f({\bf x}) \right\} \cdot [1 + {\rm gauge-invariant, non-next what ive regularization} \right\} \cdot \left[0 + {\rm d} \overline{\phi} + {\rm d} \overline{\phi} \right] + {\rm d} \overline{\phi} + {\rm d$$

 Regularize the path integrals by discretizing the theory on a Euclidean spacetime lattice of spacing a



- Define gauge and matter fields on lattice elements, build a gauge-invariant lattice action $S_{\rm E}$ and lattice observables
- ullet The continuum Euclidean QCD action is recovered for a o 0

$$\mathit{S}_{E} = \int \mathrm{d}^{4}x \left\{ \frac{1}{2} \mathrm{Tr} \left(\mathit{F}_{\mu\nu} \mathit{F}_{\mu\nu} \right) + \sum_{\mathit{f}} \overline{\psi}_{\mathit{f}}(x) \left(\gamma_{\mu} \mathit{D}_{\mu} + \mathit{m}_{\mathit{f}} \right) \psi_{\mathit{f}}(x) \right\} \cdot \left[1 + \right.$$

- Regularize the path integrals by discretizing the theory on a Euclidean spacetime lattice of spacing a
- ullet Define gauge and matter fields on lattice elements, build a gauge-invariant lattice action $S_{\rm E}$ and lattice observables

$$S_{E} = -\frac{1}{g^{2}} \sum_{x} \sum_{\mu,\nu} \operatorname{Tr} \left(U_{\mu}(x) U_{\nu}(x + a\hat{\mu}) U_{\mu}^{\dagger}(x + a\hat{\nu}) U_{\nu}^{\dagger}(x) \right) + \sum_{x,y,f} a^{4} \overline{\psi}_{f}(x) M_{x,y}^{f} \psi_{f}(y)$$

$$M_{x,y}^f = m\delta_{x,y} - \frac{1}{2a} \sum_{\mu} \left[(r - \gamma_{\mu})U_{\mu}(x)\delta_{x+a\hat{\mu},y} + (r + \gamma_{\mu})U_{\mu}^{\dagger}(y)\delta_{x-a\hat{\mu},y} \right]$$

ullet The continuum Euclidean QCD action is recovered for a o 0

$$S_{\mathsf{E}} = \int \mathrm{d}^4 x \left\{ rac{1}{2} \mathrm{Tr} \left(F_{\mu
u} F_{\mu
u}
ight) + \sum_f \overline{\psi}_f(x) \left(\gamma_\mu D_\mu + m_f \right) \psi_f(x)
ight\} \cdot \left[1 + O(a) \right]$$

- A gauge-invariant, non-perturbative regularization
- Suitable for Monte Carlo integration: sample configuration space according statistical weight proportional to $\exp(-S_{\rm E})$, compute expectation values

- Regularize the path integrals by discretizing the theory on a Euclidean spacetime lattice of spacing a
- ullet Define gauge and matter fields on lattice elements, build a gauge-invariant lattice action $S_{\rm E}$ and lattice observables
- ullet The continuum Euclidean QCD action is recovered for a o 0

$$S_{\mathsf{E}} = \int \mathrm{d}^4 x \left\{ rac{1}{2} \mathrm{Tr} \left(F_{\mu
u} F_{\mu
u}
ight) + \sum_f \overline{\psi}_f(x) \left(\gamma_\mu D_\mu + m_f
ight) \psi_f(x)
ight\} \cdot \left[1 + O(\mathsf{a})
ight]$$

- A gauge-invariant, non-perturbative regularization
- Suitable for Monte Carlo integration: sample configuration space according to a statistical weight proportional to $\exp(-S_{\rm E})$, compute expectation values

- Regularize the path integrals by discretizing the theory on a Euclidean spacetime lattice of spacing a
- ullet Define gauge and matter fields on lattice elements, build a gauge-invariant lattice action $S_{\rm E}$ and lattice observables
- ullet The continuum Euclidean QCD action is recovered for a o 0

$$S_{\mathsf{E}} = \int \mathrm{d}^4 x \left\{ rac{1}{2} \mathrm{Tr} \left(F_{\mu
u} F_{\mu
u}
ight) + \sum_f \overline{\psi}_f(x) \left(\gamma_\mu D_\mu + m_f
ight) \psi_f(x)
ight\} \cdot \left[1 + O(\mathsf{a})
ight]$$

- A gauge-invariant, non-perturbative regularization
- Suitable for Monte Carlo integration: sample configuration space according to a statistical weight proportional to $\exp(-S_{\rm E})$, compute expectation values

- Regularize the path integrals by discretizing the theory on a Euclidean spacetime lattice of spacing a
- ullet Define gauge and matter fields on lattice elements, build a gauge-invariant lattice action $S_{\rm E}$ and lattice observables
- ullet The continuum Euclidean QCD action is recovered for a
 ightarrow 0

$$S_{\mathsf{E}} = \int \mathrm{d}^4 x \left\{ rac{1}{2} \mathrm{Tr} \left(F_{\mu
u} F_{\mu
u}
ight) + \sum_f \overline{\psi}_f(x) \left(\gamma_\mu D_\mu + m_f
ight) \psi_f(x)
ight\} \cdot \left[1 + O(\mathsf{a})
ight]$$

- A gauge-invariant, non-perturbative regularization
- Suitable for Monte Carlo integration: sample configuration space according to a statistical weight proportional to $\exp(-S_{\rm E})$, compute expectation values

$$\begin{split} \langle \mathcal{O} \rangle & = & \frac{\int \prod \mathrm{d} \psi(x) \mathrm{d} \overline{\psi}(x) \prod \mathrm{d} U_{\mu}(x) \mathcal{O} \exp(-S_{\mathsf{E}})}{\int \prod \mathrm{d} \psi(x) \mathrm{d} \overline{\psi}(x) \prod \mathrm{d} U_{\mu}(x) \exp(-S_{\mathsf{E}})} \\ & = & \frac{\int \prod \mathrm{d} U_{\mu}(x) \mathcal{O} \left(\prod_f \det M^f\right) \exp(-S_{\mathsf{E}}^{\mathsf{YM}})}{\int \prod \mathrm{d} U_{\mu}(x) \left(\prod_f \det M^f\right) \exp(-S_{\mathsf{E}}^{\mathsf{YM}})} \end{aligned}$$

• The lattice introduces a finite momentum cutoff O(1/a)

- Gauge invariance is explicitly preserved at all a
- At finite a, Lorentz-Poincaré symmetries are broken down to discrete subgroups
- The lattice spacing a has no physical meaning: physical results obtained only in the continuum limit $a \to 0$
- At the quantum level, the continuum theory is a good low-energy effective theory
 for the lattice theory
- Required separation of scales:

$$1/L \ll \Lambda \ll 1/a$$
,

with L the linear extent of the lattice and Λ the scale of phenomena under consideration

- The lattice introduces a finite momentum cutoff O(1/a)
- Gauge invariance is explicitly preserved at all a
- At finite a, Lorentz-Poincaré symmetries are broken down to discrete subgroups
- The lattice spacing a has no physical meaning: physical results obtained only in the continuum limit $a \to 0$
- At the quantum level, the continuum theory is a good low-energy effective theory
 for the lattice theory
- Required separation of scales:

$$1/L \ll \Lambda \ll 1/a$$
,

- with L the linear extent of the lattice and Λ the scale of phenomena under consideration
- Euclidean formulation: Monte Carlo estimate of $\langle \mathcal{O} \rangle$ made possible by a *rea positive* statistical weight proportional to $\exp(-S_{\Gamma})$

- The lattice introduces a finite momentum cutoff O(1/a)
- Gauge invariance is explicitly preserved at all a
- At finite a, Lorentz-Poincaré symmetries are broken down to discrete subgroups
- The lattice spacing a has no physical meaning: physical results obtained only in the continuum limit $a \rightarrow 0$
- At the quantum level, the continuum theory is a good low-energy effective theory for the lattice theory
- Required separation of scales:

$$1/L \ll \Lambda \ll 1/a$$
,

- with L the linear extent of the lattice and Λ the scale of phenomena under consideration
- Euclidean formulation: Monte Carlo estimate of $\langle \mathcal{O} \rangle$ made possible by a *real positive* statistical weight proportional to $\exp(-S_E)$

- The lattice introduces a finite momentum cutoff O(1/a)
- Gauge invariance is explicitly preserved at all a
- At finite a, Lorentz-Poincaré symmetries are broken down to discrete subgroups
- The lattice spacing a has no physical meaning: physical results obtained only in the continuum limit $a \to 0$
- At the quantum level, the continuum theory is a good low-energy effective theory for the lattice theory
- Required separation of scales:

$$1/L \ll \Lambda \ll 1/a$$
,

with L the linear extent of the lattice and Λ the scale of phenomena under consideration

- The lattice introduces a finite momentum cutoff O(1/a)
- Gauge invariance is explicitly preserved at all a
- At finite a, Lorentz-Poincaré symmetries are broken down to discrete subgroups
- The lattice spacing a has no physical meaning: physical results obtained only in the continuum limit $a \to 0$
- At the quantum level, the continuum theory is a good low-energy effective theory for the lattice theory
- Required separation of scales:

$$1/L \ll \Lambda \ll 1/a$$
,

with L the linear extent of the lattice and Λ the scale of phenomena under consideration

- The lattice introduces a finite momentum cutoff O(1/a)
- Gauge invariance is explicitly preserved at all a
- At finite a, Lorentz-Poincaré symmetries are broken down to discrete subgroups
- The lattice spacing a has no physical meaning: physical results obtained only in the continuum limit $a \to 0$
- At the quantum level, the continuum theory is a good low-energy effective theory for the lattice theory
- Required separation of scales:

$$1/L \ll \Lambda \ll 1/a$$
,

with L the linear extent of the lattice and Λ the scale of phenomena under consideration

- The lattice introduces a finite momentum cutoff O(1/a)
- Gauge invariance is explicitly preserved at all a
- At finite a, Lorentz-Poincaré symmetries are broken down to discrete subgroups
- The lattice spacing a has no physical meaning: physical results obtained only in the continuum limit $a \to 0$
- At the quantum level, the continuum theory is a good low-energy effective theory for the lattice theory
- Required separation of scales:

$$1/L \ll \Lambda \ll 1/a$$
,

with L the linear extent of the lattice and Λ the scale of phenomena under consideration

- What is the value of a, for a given set of parameters of the lattice theory?
- Scale setting: match a low-energy lattice observable to its continuum value
 Example in purely gluonic SU(X) Yang Mills theory continuing static parental in
 - $(\mathcal{W}(r,L)) \propto \exp(-\sigma r L) = \exp\left(-\sigma s^2 \cdot \frac{t}{s} \cdot \frac{L}{s}\right)$
 - \Rightarrow Destroy a using $a = (440 \text{MeV})^2$ and 197 MeV
- Extrapolation to the continuum limit a → 0 is possible in the presence of a continuous phase transition of the lattice theory
- The physical values of the other parameters of the lattice theory can be set in a similar way

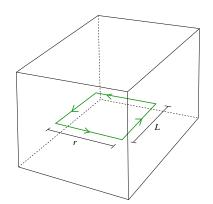
- What is the value of a, for a given set of parameters of the lattice theory?
- Scale setting: match a low-energy lattice observable to its continuum value
 - \bigstar Example in purely gluonic $\mathrm{SU}(N)$ Yang-Mills theory: confining static potential from large Wilson loops $\mathcal{W}(r,L)$

$$\langle \mathcal{W}(r,L) \rangle \propto \exp\left(-\sigma r L\right) = \exp\left(-\sigma a^2 \cdot \frac{r}{a} \cdot \frac{L}{a}\right)$$

- \star Fit σa^2 from simulation results
- \bigstar Deduce a using $\sigma = (440 \, \text{MeV})^2$ and 197 MeV $\simeq 1 \, \text{fm}^{-1}$
- Extrapolation to the continuum limit $a \to 0$ is possible in the presence of a *continuous* phase transition of the lattice theory
- The physical values of the other parameters of the lattice theory can be set in a similar way

- What is the value of a, for a given set of parameters of the lattice theory?
- Scale setting: match a low-energy lattice observable to its continuum value
 - \star Example in purely gluonic $\mathrm{SU}(\vec{N})$ Yang-Mills theory: confining static potential from large Wilson loops $\mathcal{W}(r,L)$

$$\langle \mathcal{W}(r,L) \rangle \propto \exp\left(-\sigma r L\right) = \exp\left(-\sigma a^2 \cdot \frac{r}{a} \cdot \frac{L}{a}\right)$$



- What is the value of a, for a given set of parameters of the lattice theory?
- Scale setting: match a low-energy lattice observable to its continuum value
 - \star Example in purely gluonic $\mathrm{SU}(N)$ Yang-Mills theory: confining static potential from large Wilson loops $\mathcal{W}(r,L)$

$$\langle \mathcal{W}(r,L) \rangle \propto \exp\left(-\sigma r L\right) = \exp\left(-\sigma a^2 \cdot \frac{r}{a} \cdot \frac{L}{a}\right)$$

- \star Fit σa^2 from simulation results
- \bigstar Deduce a using $\sigma = (440 \text{MeV})^2$ and 197 MeV $\simeq 1 \text{ fm}^{-1}$
- Extrapolation to the continuum limit $a \to 0$ is possible in the presence of a *continuous* phase transition of the lattice theory
- The physical values of the other parameters of the lattice theory can be set in a similar way

- What is the value of a, for a given set of parameters of the lattice theory?
- Scale setting: match a low-energy lattice observable to its continuum value
 - \star Example in purely gluonic $\mathrm{SU}(N)$ Yang-Mills theory: confining static potential from large Wilson loops $\mathcal{W}(r,L)$

$$\langle \mathcal{W}(r,L) \rangle \propto \exp\left(-\sigma r L\right) = \exp\left(-\sigma a^2 \cdot \frac{r}{a} \cdot \frac{L}{a}\right)$$

- \star Fit σa^2 from simulation results
- \bigstar Deduce a using $\sigma = (440 \, \text{MeV})^2$ and 197 MeV $\simeq 1 \, \text{fm}^{-1}$
- Extrapolation to the continuum limit $a \to 0$ is possible in the presence of a *continuous* phase transition of the lattice theory
- The physical values of the other parameters of the lattice theory can be set in a similar way

Scale setting

- What is the value of a, for a given set of parameters of the lattice theory?
- Scale setting: match a low-energy lattice observable to its continuum value
 - \star Example in purely gluonic $\mathrm{SU}(N)$ Yang-Mills theory: confining static potential from large Wilson loops $\mathcal{W}(r,L)$

$$\langle \mathcal{W}(r,L) \rangle \propto \exp\left(-\sigma r L\right) = \exp\left(-\sigma a^2 \cdot \frac{r}{a} \cdot \frac{L}{a}\right)$$

- \star Fit σa^2 from simulation results
- \star Deduce a using $\sigma = (440 \text{MeV})^2$ and 197 MeV $\simeq 1 \text{ fm}^{-1}$
- Extrapolation to the continuum limit $a \to 0$ is possible in the presence of a continuous phase transition of the lattice theory
- The physical values of the other parameters of the lattice theory can be set in a similar way

Scale setting

- What is the value of a, for a given set of parameters of the lattice theory?
- Scale setting: match a low-energy lattice observable to its continuum value
 - \star Example in purely gluonic $\mathrm{SU}(N)$ Yang-Mills theory: confining static potential from large Wilson loops $\mathcal{W}(r,L)$

$$\langle \mathcal{W}(r,L) \rangle \propto \exp\left(-\sigma r L\right) = \exp\left(-\sigma a^2 \cdot \frac{r}{a} \cdot \frac{L}{a}\right)$$

- \star Fit σa^2 from simulation results
- \star Deduce a using $\sigma = (440 \text{MeV})^2$ and 197 MeV $\simeq 1 \text{ fm}^{-1}$
- Extrapolation to the continuum limit $a \to 0$ is possible in the presence of a continuous phase transition of the lattice theory
- The physical values of the other parameters of the lattice theory can be set in a similar way

- "Lattice QCD is only an approximation of QCD"
- "The results depend on the details of your discretization"
- "You can never recover the correct rotational and translational *symmetries* of the original continuum theory"
- "You always have undesired additional quark species (doublers)"
- "It only works / it is only defined at strong coupling"
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD"
- "The results depend on the details of your discretization"
- "You can never recover the correct rotational and translational symmetries of the original continuum theory"
- "You always have undesired additional quark species (doublers)"
- "It only works / it is only defined at strong coupling"
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD" False
 - ★ In the physical, large-volume and continuum limits, it is *the* mathematically rigorous non-perturbative definition of QCD
- "The results depend on the details of your discretization"
- "You can never recover the correct rotational and translational symmetries of the original continuum theory"
- "You always have undesired additional quark species (doublers)"
- "It only works / it is only defined at strong coupling
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD" False
- "The results depend on the *details* of your discretization"
- "You can never recover the correct rotational and translational symmetries of the original continuum theory"
- "You always have undesired additional quark species (doublers)"
- "It only works / it is only defined at strong coupling"
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD" False
- "The results depend on the *details* of your discretization" *False*
 - ★ The intermediate results do depend on the discretization details, those extrapolated to the continuum limit do not
- "You can never recover the correct rotational and translational symmetries of the original continuum theory"
- "You always have undesired additional quark species (doublers)"
- "It only works / it is only defined at strong coupling
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD" False
- "The results depend on the *details* of your discretization" *False*
- "You can never recover the correct rotational and translational symmetries of the original continuum theory"
- "You always have undesired additional quark species (doublers)"
- "It only works / it is only defined at strong coupling"
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD" False
- "The results depend on the details of your discretization" False
- "You can never recover the correct rotational and translational symmetries of the original continuum theory" — False
 - ★ All symmetry-breaking operators of the lattice theory are irrelevant and decouple when the lattice spacing a → 0; no additional, unwanted operators are generated upon renormalization
- "You always have undesired additional quark species (doublers)"
- "It only works / it is only defined at strong coupling"
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD" False
- "The results depend on the *details* of your discretization" False
- "You can never recover the correct rotational and translational symmetries of the original continuum theory" — False
- "You always have undesired additional quark species (doublers)"
- "It only works / it is only defined at strong coupling"
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD" False
- "The results depend on the details of your discretization" False
- "You can never recover the correct rotational and translational symmetries of the original continuum theory" — False
- "You always have undesired additional quark species (doublers)" False
 - \star They are easily removed e.g. by adding a Wilson term (or in more sophisticated ways)
- "It only works / it is only defined at strong coupling"
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD" False
- "The results depend on the *details* of your discretization" *False*
- "You can never recover the correct rotational and translational symmetries of the original continuum theory" — False
- "You always have undesired additional quark species (doublers)" False
- "It only works / it is only defined at strong coupling"
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD" False
- "The results depend on the *details* of your discretization" *False*
- "You can never recover the correct rotational and translational symmetries of the original continuum theory" — False
- "You always have undesired additional quark species (doublers)" False
- "It only works / it is only defined at strong coupling" False
 - \bigstar It is defined at any value of the coupling; the continuum limit $a \to 0$ is taken at weak coupling
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

- "Lattice QCD is only an approximation of QCD" False
- "The results depend on the *details* of your discretization" *False*
- "You can never recover the correct rotational and translational symmetries of the original continuum theory" — False
- "You always have undesired additional quark species (doublers)" False
- "It only works / it is only defined at strong coupling" False
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)"

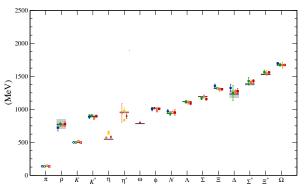
- "Lattice QCD is only an approximation of QCD" False
- "The results depend on the details of your discretization" False
- "You can never recover the correct rotational and translational symmetries of the original continuum theory" — False
- "You always have undesired additional quark species (doublers)" False
- "It only works / it is only defined at strong coupling" False
- "It is numerically untractable: you can never be able to deal with those large Dirac operators / you are bound to neglect quark dynamics (quenched approximation)" — False
 - ★ Thanks to computer-power and algorithmic progress, quenched lattice QCD calculations are now mostly *obsolete*

Outline

- Motivation
- Quantum field theory on a lattice
- 3 A selection of results
- 4 Conclusions

Hadron spectrum

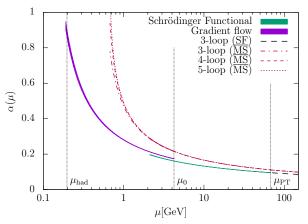
The calculation of the hadron spectrum from the first principles of QCD has always been a major motivation for lattice studies



Compilation of lattice results for the hadron spectrum obtained by various collaborations, adapted from [A. Kronfeld, 2012]. Open symbols denote the masses used to set the lattice parameters. Horizontal bars denote experimental masses, and gray boxes indicate experimental widths

QCD running coupling

Lattice calculations allow to compute the $\alpha_{\rm s}=g_{\rm s}^2/(4\pi)$ running coupling over a broad range of transferred momenta μ , from the perturbative down to the hadronic regime



Lattice results for α_s from the ALPHA Collaboration [M. Bruno et al., 2017]

- Because of color confinement, quark masses are not directly accessible to experiments
- For the lightest quark flavors (u, d, and possibly s), the highly non-trivial, strongly coupled dynamics of QCD at low energies implies that the origin of hadron masses is not from the constituent (valence) quark masses
- Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides an elegant description of the low-energy physics of QCD with n_f (nearly) massless quark flavors, in terms of its (approximate) global chiral symmetry
- A low-energy effective theory, encoding the non-trivial dynamics of microscopic origin into an infinite set of *low-energy constants*: Σ (quark condensate), F ("pion" decay constant), . . .
- These constants can be directly related to the masses of quarks and of hadrons e.g. $m_\pi^2 F^2 = (m_u + m_d) \langle \bar{q}q \rangle$ [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]
- Lattice calculations of these low-energy constants allow to determine the light quark masses [S. Aoki et al., 2013]

$$\frac{m_u + m_d}{2} = (3.42 \pm 0.06_{\text{stat}} \pm 0.07_{\text{sys}}) \text{ MeV}$$

- Because of color confinement, quark masses are not directly accessible to experiments
- For the lightest quark flavors (u, d, and possibly s), the highly non-trivial, strongly coupled dynamics of QCD at low energies implies that the origin of hadron masses is not from the constituent (valence) quark masses
- Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides an elegant description of the low-energy physics of QCD with n_f (nearly) massless quark flavors, in terms of its (approximate) global chiral symmetry
- A low-energy effective theory, encoding the non-trivial dynamics of microscopic origin into an infinite set of *low-energy constants*: Σ (quark condensate), F ("pion" decay constant), . . .
- These constants can be directly related to the masses of quarks and of hadrons e.g. $m_\pi^2 F^2 = (m_u + m_d) \langle \bar{q}q \rangle$ [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]
- Lattice calculations of these low-energy constants allow to determine the light quark masses [S. Aoki et al., 2013]

$$\frac{m_u + m_d}{2} = (3.42 \pm 0.06_{\text{stat}} \pm 0.07_{\text{sys}}) \text{ MeV}$$

- Because of color confinement, quark masses are not directly accessible to experiments
- For the lightest quark flavors (u, d, and possibly s), the highly non-trivial, strongly coupled dynamics of QCD at low energies implies that the origin of hadron masses is not from the constituent (valence) quark masses
- Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides an elegant description of the low-energy physics of QCD with n_f (nearly) massless quark flavors, in terms of its (approximate) global chiral symmetry
- A low-energy effective theory, encoding the non-trivial dynamics of microscopic origin into an infinite set of *low-energy constants*: Σ (quark condensate), F ("pion" decay constant), . . .
- These constants can be directly related to the masses of quarks and of hadrons e.g. $m_\pi^2 F^2 = (m_u + m_d) \langle \bar q q \rangle$ [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]
- Lattice calculations of these low-energy constants allow to determine the light quark masses [S. Aoki et al., 2013]

 $\frac{m_u + m_d}{2} = (3.42 \pm 0.06_{\text{stat}} \pm 0.07_{\text{sys}}) \text{ MeV}$

- Because of color confinement, quark masses are not directly accessible to experiments
- For the lightest quark flavors (u, d, and possibly s), the highly non-trivial, strongly coupled dynamics of QCD at low energies implies that the origin of hadron masses is not from the constituent (valence) quark masses
- Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides an elegant description of the low-energy physics of QCD with n_f (nearly) massless quark flavors, in terms of its (approximate) global chiral symmetry
- A low-energy effective theory, encoding the non-trivial dynamics of microscopic origin into an infinite set of *low-energy constants*: Σ (quark condensate), F ("pion" decay constant), . . .
- These constants can be directly related to the masses of quarks and of hadrons, e.g. $m_\pi^2 F^2 = (m_u + m_d) \langle \bar{q}q \rangle$ [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]
- Lattice calculations of these low-energy constants allow to determine the light quark masses [S. Aoki et al., 2013]

$$\frac{m_u + m_d}{2} = (3.42 \pm 0.06_{\rm stat} \pm 0.07_{\rm sys}) \text{ MeV}$$

- Because of color confinement, quark masses are not directly accessible to experiments
- For the lightest quark flavors (u, d, and possibly s), the highly non-trivial, strongly coupled dynamics of QCD at low energies implies that the origin of hadron masses is not from the constituent (valence) quark masses
- Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides an elegant description of the low-energy physics of QCD with n_f (nearly) massless quark flavors, in terms of its (approximate) global chiral symmetry
- A low-energy effective theory, encoding the non-trivial dynamics of microscopic origin into an infinite set of *low-energy constants*: Σ (quark condensate), F ("pion" decay constant), . . .
- These constants can be directly related to the masses of quarks and of hadrons, e.g. $m_\pi^2 F^2 = (m_u + m_d) \langle \overline{q}q \rangle$ [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]
- Lattice calculations of these low-energy constants allow to determine the light quark masses [S. Aoki et al., 2013]

$$\frac{m_u + m_d}{2} = (3.42 \pm 0.06_{\text{stat}} \pm 0.07_{\text{sys}}) \text{ MeV}$$

- Because of color confinement, quark masses are not directly accessible to experiments
- For the lightest quark flavors (u, d, and possibly s), the highly non-trivial, strongly coupled dynamics of QCD at low energies implies that the origin of hadron masses is not from the constituent (valence) quark masses
- ullet Chiral effective theory [S. Weinberg, 1979] [J. Gasser and H. Leutwyler, 1984] provides an elegant description of the low-energy physics of QCD with n_f (nearly) massless quark flavors, in terms of its (approximate) global chiral symmetry
- A low-energy effective theory, encoding the non-trivial dynamics of microscopic origin into an infinite set of *low-energy constants*: Σ (quark condensate), F ("pion" decay constant), . . .
- These constants can be directly related to the masses of quarks and of hadrons, e.g. $m_\pi^2 F^2 = (m_u + m_d) \langle \overline{q}q \rangle$ [M. Gell-Mann, R. J. Oakes, and B. Renner, 1968]
- Lattice calculations of these low-energy constants allow to determine the light quark masses [S. Aoki et al., 2013]

$$rac{m_u + m_d}{2} = (3.42 \pm 0.06_{
m stat} \pm 0.07_{
m sys}) \,\,\, {
m MeV}$$

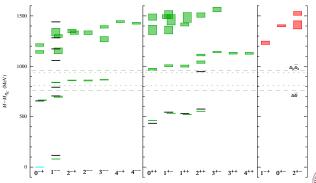
Heavy quarks

- Lattice studies of heavy quark flavors (c and b) are often based on heavy-quark effective theories, or on expansions around the non-relativistic limit
- Quantities of particular phenomenological interest include the spectrum of charmonium (c\overline{c}) states
- Semileptonic decays of B and D mesons (e.g. $B \to \pi l \overline{\nu}_l$), providing information on elements of the Cabibbo-Kobayashi-Maskawa, can be studied on the lattice by means of matrix elements of appropriate currents between the desired initial and final states, e.g. $\langle \pi(p)|V_{\mu}(q)|B(p_B)\rangle$ [J. Laiho, E. Lunghi, and R. S. Van de Water, 2009]

Heavy quarks

- Lattice studies of heavy quark flavors (c and b) are often based on heavy-quark effective theories, or on expansions around the non-relativistic limit
- Quantities of particular phenomenological interest include the spectrum of charmonium ($c\overline{c}$) states

Charmonium spectrum from a lattice calculation by the Hadron Spectrum Collaboration [L. Liu et al., 2012], showing the differences with respect to the ground-state η_c mass, whose experimental value is $M_{\eta_c}=2983.6\pm0.7$ MeV



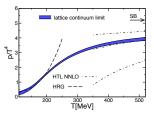
• Semileptonic decays of B and D mesons (e.g. $B \to \pi l \overline{\nu}_l$), providing information on elements of the Cabibbo-Kobayashi-Maskawa, can be studied one than the lattice

Heavy quarks

- Lattice studies of heavy quark flavors (c and b) are often based on heavy-quark effective theories, or on expansions around the non-relativistic limit
- Quantities of particular phenomenological interest include the spectrum of charmonium ($c\overline{c}$) states
- Semileptonic decays of B and D mesons (e.g. $B \to \pi l \overline{\nu}_l$), providing information on elements of the Cabibbo-Kobayashi-Maskawa, can be studied on the lattice by means of matrix elements of appropriate currents between the desired initial and final states, e.g. $\langle \pi(p)|V_{\mu}(q)|B(p_B)\rangle$ [J. Laiho, E. Lunghi, and R. S. Van de Water, 2009]

- At temperatures $T\gtrsim 160$ MeV, ordinary hadronic matter undergoes a crossover to a deconfined and chirally restored phase: the quark-gluon plasma
- Lattice results for equilibrium-thermodynamics quantities are consistent with the expected behavior in the low- and high-temperature limits, and interpolate smoothly between them
- The $\langle \bar{q}q \rangle$ quark condensate is found to drop with the temperature, in agreement with the restoration of $SU_A(n_f)$ symmetry [S. Borsányi et al., 2010] [A. Bazavov et al., 2011]
- Fluctuations of conserved charges (baryon number B, electric charge Q, strangeness S), relevant for freeze-out conditions realized in heavy-ion collision experiments [F. Karsch, 2012], are also studied [S. Borsányi et al., 2011] [A. Bazavov et al., 2012] [S. Borsányi et al., 2014]
- Dissociation of quarkonium states [G. Aarts et al., 2014] provides a quark-gluon plasma "thermometer" [T. Matsui and H. Satz, 1986]

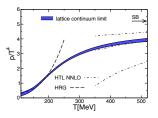
- ullet At temperatures $T\gtrsim 160$ MeV, ordinary hadronic matter undergoes a crossover to a deconfined and chirally restored phase: the quark-gluon plasma
- Lattice results for equilibrium-thermodynamics quantities are consistent with the expected behavior in the low- and high-temperature limits, and interpolate smoothly between them



QCD pressure, as a function of temperature [S. Borsányi et al., 2013]

- The $\langle \overline{q}q \rangle$ quark condensate is found to drop with the temperature, in agreement with the restoration of $SU_A(n_f)$ symmetry [S. Borsányi et al., 2010] [A. Bazavov et al., 2011]
- Fluctuations of conserved charges (baryon number B, electric charge Q, strangeness S), relevant for freeze-out conditions realized in heavy-ion colexperiments [F. Karsch, 2012], are also studied [S. Borsányi et al., 2011] [A. I et al., 2012] [S. Borsányi et al., 2014]

- At temperatures $T\gtrsim 160$ MeV, ordinary hadronic matter undergoes a crossover to a deconfined and chirally restored phase: the quark-gluon plasma
- Lattice results for equilibrium-thermodynamics quantities are consistent with the expected behavior in the low- and high-temperature limits, and interpolate smoothly between them

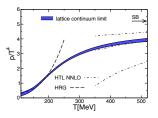


QCD pressure, as a function of temperature [S. Borsányi et al., 2013]

Main features:

- ★ Confining phase: Consistency with hadron-resonance-gas model
- \star Abrupt increase in thermodynamic potentials signals the "liberation" of colored degrees of freedom around $T\simeq 160$ MeV
- ★ Deconfined phase: Slow approach to hard-thermal-loop resummed perturbation theo
- The $\langle \bar{q}q \rangle$ quark condensate is found to drop with the temperature, in agree with the restoration of $\mathrm{SU}_{\mathrm{A}}(n_{\mathrm{f}})$ symmetry [S. Borsányi et al., 2010] [A. Baza

- ullet At temperatures $T\gtrsim 160$ MeV, ordinary hadronic matter undergoes a crossover to a deconfined and chirally restored phase: the quark-gluon plasma
- Lattice results for equilibrium-thermodynamics quantities are consistent with the expected behavior in the low- and high-temperature limits, and interpolate smoothly between them

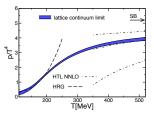


QCD pressure, as a function of temperature [S. Borsányi et al., 2013]

Main features:

- ★ Confining phase: Consistency with hadron-resonance-gas model
- \bigstar Abrupt increase in thermodynamic potentials signals the "liberation" of colored degrees of freedom around $T\simeq 160$ MeV
- ★ Deconfined phase: Slow approach to hard-thermal-loop resummed perturbation theor
- The $\langle \overline{q}q \rangle$ quark condensate is found to drop with the temperature, in agree with the restoration of $SU_A(n_f)$ symmetry [S. Borsányi et al., 2010] [A. Baza

- ullet At temperatures $T\gtrsim 160$ MeV, ordinary hadronic matter undergoes a crossover to a deconfined and chirally restored phase: the quark-gluon plasma
- Lattice results for equilibrium-thermodynamics quantities are consistent with the expected behavior in the low- and high-temperature limits, and interpolate smoothly between them



QCD pressure, as a function of temperature [S. Borsányi et al., 2013]

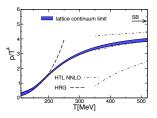
Main features:

- ★ Confining phase: Consistency with hadron-resonance-gas model
- \bigstar Abrupt increase in thermodynamic potentials signals the "liberation" of colored degrees of freedom around $T\simeq 160~\text{MeV}$
- \bigstar Deconfined phase: Slow approach to hard-thermal-loop resummed perturbation theory

900

• The $\langle \overline{q}q \rangle$ quark condensate is found to drop with the temperature, in agree with the restoration of $SU_A(n_f)$ symmetry [S. Borsányi et al., 2010] [A. Baza al., 2011]

- ullet At temperatures $T\gtrsim 160$ MeV, ordinary hadronic matter undergoes a crossover to a deconfined and chirally restored phase: the quark-gluon plasma
- Lattice results for equilibrium-thermodynamics quantities are consistent with the expected behavior in the low- and high-temperature limits, and interpolate smoothly between them



QCD pressure, as a function of temperature [S. Borsányi et al., 2013]

Main features:

- ★ Confining phase: Consistency with hadron-resonance-gas model
- \bigstar Abrupt increase in thermodynamic potentials signals the "liberation" of colored degrees of freedom around $T\simeq 160~\text{MeV}$

900

- ★ Deconfined phase: Slow approach to hard-thermal-loop resummed perturbation theory predictions
- The $\langle \overline{q}q \rangle$ quark condensate is found to drop with the temperature, in agriculture, with the restoration of $SU_A(n_f)$ symmetry [S. Borsányi et al., 2010] [A. Bazalva al., 2011]

- At temperatures $T \gtrsim 160$ MeV, ordinary hadronic matter undergoes a crossover to a deconfined and chirally restored phase: the quark-gluon plasma
- Lattice results for equilibrium-thermodynamics quantities are consistent with the expected behavior in the low- and high-temperature limits, and interpolate smoothly between them
- The $\langle \overline{q}q \rangle$ quark condensate is found to drop with the temperature, in agreement with the restoration of $\mathrm{SU_A}(n_f)$ symmetry [S. Borsányi et al., 2010] [A. Bazavov et al., 2011]
- Fluctuations of conserved charges (baryon number B, electric charge Q, strangeness S), relevant for freeze-out conditions realized in heavy-ion collision experiments [F. Karsch, 2012], are also studied [S. Borsányi et al., 2011] [A. Bazavov et al., 2012] [S. Borsányi et al., 2014]
- Dissociation of quarkonium states [G. Aarts et al., 2014] provides a quark-gluon plasma "thermometer" [T. Matsui and H. Satz, 1986]

- ullet At temperatures $T\gtrsim 160$ MeV, ordinary hadronic matter undergoes a crossover to a deconfined and chirally restored phase: the quark-gluon plasma
- Lattice results for equilibrium-thermodynamics quantities are consistent with the expected behavior in the low- and high-temperature limits, and interpolate smoothly between them
- The $\langle \overline{q}q \rangle$ quark condensate is found to drop with the temperature, in agreement with the restoration of $SU_A(n_f)$ symmetry [S. Borsányi et al., 2010] [A. Bazavov et al., 2011]
- Fluctuations of conserved charges (baryon number B, electric charge Q, strangeness S), relevant for freeze-out conditions realized in heavy-ion collision experiments [F. Karsch, 2012], are also studied [S. Borsányi et al., 2011] [A. Bazavov et al., 2012] [S. Borsányi et al., 2014]

$$T_{\mathrm{fr}}=144(10)$$
 MeV, $\mu_{\mathrm{fr}}^{B}=102(6)$ MeV at RHIC (STAR, $\sqrt{s}=39$ GeV)

 Dissociation of quarkonium states [G. Aarts et al., 2014] provides a quark-gluor plasma "thermometer" [T. Matsui and H. Satz, 1986]

- At temperatures $T \gtrsim 160$ MeV, ordinary hadronic matter undergoes a crossover to a deconfined and chirally restored phase: the quark-gluon plasma
- Lattice results for equilibrium-thermodynamics quantities are consistent with the expected behavior in the low- and high-temperature limits, and interpolate smoothly between them
- The $\langle \overline{q}q \rangle$ quark condensate is found to drop with the temperature, in agreement with the restoration of $SU_A(n_f)$ symmetry [S. Borsányi et al., 2010] [A. Bazavov et al., 2011]
- Fluctuations of conserved charges (baryon number B, electric charge Q, strangeness S), relevant for freeze-out conditions realized in heavy-ion collision experiments [F. Karsch, 2012], are also studied [S. Borsányi et al., 2011] [A. Bazavov et al., 2012] [S. Borsányi et al., 2014]
- Dissociation of quarkonium states [G. Aarts et al., 2014] provides a quark-gluon plasma "thermometer" [T. Matsui and H. Satz, 1986]

Recent works are studying (light) nuclei with lattice QCD [M. J. Savage, 2011]

- Numerically very challenging calculations
- A no-go theorem forbids a direct extraction of hadronic S-matrix elements in infinite Euclidean spacetime [L. Maiani and M. Testa, 1990]
- Lattice calculations evade this theorem by relating elastic scattering amplitudes to the particles' energy dependence on the finite lattice volume [M. Lüscher, 1990]
- The binding energies of nuclear bound states are also being investigated

Recent works are studying (light) nuclei with lattice QCD [M. J. Savage, 2011]

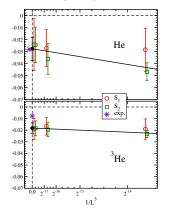
- Numerically very challenging calculations
- A no-go theorem forbids a direct extraction of hadronic S-matrix elements in infinite Euclidean spacetime [L. Maiani and M. Testa, 1990]
- Lattice calculations evade this theorem by relating elastic scattering amplitudes to the particles' energy dependence on the finite lattice volume [M. Lüscher, 1990]
- The binding energies of nuclear bound states are also being investigated

Recent works are studying (light) nuclei with lattice QCD [M. J. Savage, 2011]

- Numerically very challenging calculations
- A no-go theorem forbids a direct extraction of hadronic S-matrix elements in infinite Euclidean spacetime [L. Maiani and M. Testa, 1990]
- Lattice calculations evade this theorem by relating elastic scattering amplitudes to the particles' energy dependence on the finite lattice volume [M. Lüscher, 1990]
- The binding energies of nuclear bound states are also being investigated

Recent works are studying (light) nuclei with lattice QCD [M. J. Savage, 2011]

- Numerically very challenging calculations
- A no-go theorem forbids a direct extraction of hadronic S-matrix elements in infinite Euclidean spacetime [L. Maiani and M. Testa, 1990]
- Lattice calculations evade this theorem by relating elastic scattering amplitudes to the particles' energy dependence on the finite lattice volume [M. Lüscher, 1990]
- The binding energies of nuclear bound states are also being investigated



Binding energies of He and 3 He from a quenched lattice calculation at $a\simeq 0.128$ fm, with results displayed in units of $1/a\simeq 1540$ MeV [T. Yamazaki et al., 2009]

- QCD in the 't Hooft limit [G. 't Hooft, 1974] [B. Lucini and M. P., 2012]
- QCD-like models for New Physics beyond the Standard Model (e.g. walking technicolor models) [D. Nogradi and A. Patella, 2016]
- Dark matter as a composite state of a strongly coupled non-Abelian gauge theory
 [G. D. Kribs and E. T. Neil, 2016]
- Extra-dimensional models [F. Knechtli and E. Rinaldi, 2016]
- Supersymmetric gauge theories [S. Catterall, D. B. Kaplan, and M. Ünsal, 2009]
- Graphene and other strongly coupled condensed-matter systems [P. V. Buividovich and M. V. Ulybyshev, 2016]

- QCD in the 't Hooft limit [G. 't Hooft, 1974] [B. Lucini and M. P., 2012]
- QCD-like models for New Physics beyond the Standard Model (e.g. walking technicolor models) [D. Nogradi and A. Patella, 2016]
- Dark matter as a composite state of a strongly coupled non-Abelian gauge theory
 [G. D. Kribs and E. T. Neil, 2016]
- Extra-dimensional models [F. Knechtli and E. Rinaldi, 2016]
- Supersymmetric gauge theories [S. Catterall, D. B. Kaplan, and M. Ünsal, 2009]
- Graphene and other strongly coupled condensed-matter systems [P. V. Buividovich and M. V. Ulybyshev, 2016]

- QCD in the 't Hooft limit [G. 't Hooft, 1974] [B. Lucini and M. P., 2012]
- QCD-like models for New Physics beyond the Standard Model (e.g. walking technicolor models) [D. Nogradi and A. Patella, 2016]
- Dark matter as a composite state of a strongly coupled non-Abelian gauge theory
 [G. D. Kribs and E. T. Neil, 2016]
- Extra-dimensional models [F. Knechtli and E. Rinaldi, 2016]
- Supersymmetric gauge theories [S. Catterall, D. B. Kaplan, and M. Ünsal, 2009]
- Graphene and other strongly coupled condensed-matter systems [P. V. Buividovich and M. V. Ulybyshev, 2016]

- QCD in the 't Hooft limit [G. 't Hooft, 1974] [B. Lucini and M. P., 2012]
- QCD-like models for New Physics beyond the Standard Model (e.g. walking technicolor models) [D. Nogradi and A. Patella, 2016]
- Dark matter as a composite state of a strongly coupled non-Abelian gauge theory
 [G. D. Kribs and E. T. Neil, 2016]
- Extra-dimensional models [F. Knechtli and E. Rinaldi, 2016]
- Supersymmetric gauge theories [S. Catterall, D. B. Kaplan, and M. Ünsal, 2009]
- Graphene and other strongly coupled condensed-matter systems [P. V. Buividovich and M. V. Ulybyshev, 2016]

- QCD in the 't Hooft limit [G. 't Hooft, 1974] [B. Lucini and M. P., 2012]
- QCD-like models for New Physics beyond the Standard Model (e.g. walking technicolor models) [D. Nogradi and A. Patella, 2016]
- Dark matter as a composite state of a strongly coupled non-Abelian gauge theory
 [G. D. Kribs and E. T. Neil, 2016]
- Extra-dimensional models [F. Knechtli and E. Rinaldi, 2016]
- Supersymmetric gauge theories [S. Catterall, D. B. Kaplan, and M. Ünsal, 2009]
- Graphene and other strongly coupled condensed-matter systems [P. V. Buividovich and M. V. Ulybyshev, 2016]

- QCD in the 't Hooft limit [G. 't Hooft, 1974] [B. Lucini and M. P., 2012]
- QCD-like models for New Physics beyond the Standard Model (e.g. walking technicolor models) [D. Nogradi and A. Patella, 2016]
- Dark matter as a composite state of a strongly coupled non-Abelian gauge theory
 [G. D. Kribs and E. T. Neil, 2016]
- Extra-dimensional models [F. Knechtli and E. Rinaldi, 2016]
- Supersymmetric gauge theories [S. Catterall, D. B. Kaplan, and M. Ünsal, 2009]
- Graphene and other strongly coupled condensed-matter systems [P. V. Buividovich and M. V. Ulybyshev, 2016]

Outline

- Motivation
- Quantum field theory on a lattice
- A selection of results
- Conclusions

- The regularization on a Euclidean spacetime lattice provides the mathematically rigorous gauge-invariant, non-perturbative definition of QCD
- The continuum QCD arises as a low-energy effective description of the lattice theory, in the limit in which the (unphysical) lattice cutoff $\mathcal{O}(1/a)$ is sent to infinity
- Monte Carlo calculations on the lattice are now at a mature stage of development, and are providing first-principle QCD predictions for many physical quantities of experimental relevance
- Lattice calculations are also being generalized to challenging non-perturbative problems for physics beyond QCD
- Some important problems, however, are still unsolved—and waiting for you involvement
 - * "Sign problem" for QCD at finite baryon density
 - Theoretical formulation of cliral non-Abelian gauge theories (e.g., the electrowealth)

- The regularization on a Euclidean spacetime lattice provides the mathematically rigorous gauge-invariant, non-perturbative definition of QCD
- The continuum QCD arises as a low-energy effective description of the lattice theory, in the limit in which the (unphysical) lattice cutoff O(1/a) is sent to infinity
- Monte Carlo calculations on the lattice are now at a mature stage of development, and are providing first-principle QCD predictions for many physical quantities of experimental relevance
- Lattice calculations are also being generalized to challenging non-perturbative problems for physics beyond QCD
- Some important problems, however, are still unsolved—and waiting for you involvement

- The regularization on a Euclidean spacetime lattice provides the mathematically rigorous gauge-invariant, non-perturbative definition of QCD
- The continuum QCD arises as a low-energy effective description of the lattice theory, in the limit in which the (unphysical) lattice cutoff O(1/a) is sent to infinity
- Monte Carlo calculations on the lattice are now at a mature stage of development, and are providing first-principle QCD predictions for many physical quantities of experimental relevance
- Lattice calculations are also being generalized to challenging non-perturbative problems for physics beyond QCD
- Some important problems, however, are still unsolved—and waiting for you involvement

- The regularization on a Euclidean spacetime lattice provides the mathematically rigorous gauge-invariant, non-perturbative definition of QCD
- The continuum QCD arises as a low-energy effective description of the lattice theory, in the limit in which the (unphysical) lattice cutoff O(1/a) is sent to infinity
- Monte Carlo calculations on the lattice are now at a mature stage of development, and are providing first-principle QCD predictions for many physical quantities of experimental relevance
- Lattice calculations are also being generalized to challenging non-perturbative problems for physics beyond QCD
- Some important problems, however, are still unsolved—and waiting for your involvement
 - SIN

- The regularization on a Euclidean spacetime lattice provides the mathematically rigorous gauge-invariant, non-perturbative definition of QCD
- The continuum QCD arises as a low-energy effective description of the lattice theory, in the limit in which the (unphysical) lattice cutoff O(1/a) is sent to infinity
- Monte Carlo calculations on the lattice are now at a mature stage of development, and are providing first-principle QCD predictions for many physical quantities of experimental relevance
- Lattice calculations are also being generalized to challenging non-perturbative problems for physics beyond QCD
- Some important problems, however, are still unsolved—and waiting for your involvement
 - * "Sign problem" for QCD at finite baryon density
 - * Real-time dynamics from the lattic
 - ★ Theoretical formulation of chiral non-Abelian gauge theories (e.g. the electroweak theory of the Standard Model) on the lattice

- The regularization on a Euclidean spacetime lattice provides the mathematically rigorous gauge-invariant, non-perturbative definition of QCD
- The continuum QCD arises as a low-energy effective description of the lattice theory, in the limit in which the (unphysical) lattice cutoff O(1/a) is sent to infinity
- Monte Carlo calculations on the lattice are now at a mature stage of development, and are providing first-principle QCD predictions for many physical quantities of experimental relevance
- Lattice calculations are also being generalized to challenging non-perturbative problems for physics beyond QCD
- Some important problems, however, are still unsolved—and waiting for your involvement
 - ★ "Sign problem" for QCD at finite baryon density

- The regularization on a Euclidean spacetime lattice provides the mathematically rigorous gauge-invariant, non-perturbative definition of QCD
- The continuum QCD arises as a low-energy effective description of the lattice theory, in the limit in which the (unphysical) lattice cutoff O(1/a) is sent to infinity
- Monte Carlo calculations on the lattice are now at a mature stage of development, and are providing first-principle QCD predictions for many physical quantities of experimental relevance
- Lattice calculations are also being generalized to challenging non-perturbative problems for physics beyond QCD
- Some important problems, however, are still unsolved—and waiting for your involvement
 - ★ "Sign problem" for QCD at finite baryon density
 - * Real-time dynamics from the lattice
 - ★ Theoretical formulation of chiral non-Abelian gauge theories (e.g. the electroweal theory of the Standard Model) on the lattice

- The regularization on a Euclidean spacetime lattice provides the mathematically rigorous gauge-invariant, non-perturbative definition of QCD
- The continuum QCD arises as a low-energy effective description of the lattice theory, in the limit in which the (unphysical) lattice cutoff O(1/a) is sent to infinity
- Monte Carlo calculations on the lattice are now at a mature stage of development, and are providing first-principle QCD predictions for many physical quantities of experimental relevance
- Lattice calculations are also being generalized to challenging non-perturbative problems for physics beyond QCD
- Some important problems, however, are still unsolved—and waiting for your involvement
 - ★ "Sign problem" for QCD at finite baryon density
 - * Real-time dynamics from the lattice
 - ★ Theoretical formulation of chiral non-Abelian gauge theories (e.g. the electroweak theory of the Standard Model) on the lattice

- The regularization on a Euclidean spacetime lattice provides the mathematically rigorous gauge-invariant, non-perturbative definition of QCD
- The continuum QCD arises as a low-energy effective description of the lattice theory, in the limit in which the (unphysical) lattice cutoff O(1/a) is sent to infinity
- Monte Carlo calculations on the lattice are now at a mature stage of development, and are providing first-principle QCD predictions for many physical quantities of experimental relevance
- Lattice calculations are also being generalized to challenging non-perturbative problems for physics beyond QCD
- Some important problems, however, are still unsolved—and waiting for your involvement
 - ★ "Sign problem" for QCD at finite baryon density
 - * Real-time dynamics from the lattice
 - ★ Theoretical formulation of chiral non-Abelian gauge theories (e.g. the electroweak theory of the Standard Model) on the lattice

Thanks for your attention!

