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* General global thermodynamic equilibria in flat spacetime
* Thermodynamic equilibrium with acceleration

* (Scalar) Quantum field theory in Rindler coordinates

* Thermal expectation values and vacuum subtraction
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Motivations

* Quantum field theory in nontrivial and local thermal
equilibrium

= Description of fluids in local equilibrium with large
accelerations (QGP in heavy 1on collisions has initial
acceleration a ~ 10 g)

= Stress-energy tensor 1n general relativity beyond 1deal
fluid approximation including quantum effects



Mean values

In a quantum statistical framework, the stress-energy tensor 1s defined as:

The density operator of the familiar global thermodynamical equilibrium
in flat spacetime (in covariant form):
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General covariant (local) equilibrium

Zubarev 1979 Weert 1982

This operator is obtained by maximizing the entropy with the constraints of energy density
and momentum density

F. B., L. Bucciantini, E. Grossi, L. Tinti,
Eur. Phys. J. C 75 (2015) 191

(B frame)

T. Hayata, Y. Hidaka, T. Noumi, M. Hongo,
Phys. Rev. D 92 (2015) 065008




General covariant global t.d. equilibrium 1n flat spacetime

If the divergence of the integrand vanishes, that is:
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Y. can now be an arbitrary general timelike 3D hypersurface

For global equilibrium 3 (=1/T 1) must be a Killing vector

Solution of the Killing equation in Minkowski spacetime:

Thermal vorticity
Adimensional in natural units

constant



General global equilibrium -2

Plugging the solution into the general covariant expression of the density operator:
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Therefore, the most general thermodynamical equilibrium in Minkowski spacetime involves
the 10 generators of its maximal symmetry group.



Special cases

Pure rotation (Landau Statistical Physics)
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What 1s 1t?
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H and K are both constant (even 1f they do not commute)

At t=0

Single non-relativistic particle (restoring c)

P

H—-aK, = (mc? 4 p*/2m) / d3x (1 4 az/c?)63(x — X) ~ mc? + p2/2m + maZ

Hamiltonian of a particle in a constant and uniform gravitational field



Flow features

T ,a constants
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Comoving acceleration A° constant
along flow lines (relativistic uniformly
accelerated motion)
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Thermal features

T ,a constants

1
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Tt
Comoving temperature — constant Ratio between comoving acceleration
along flow lines (implied by Killing and comoving temperature is constant

equation)




Rewriting the density operator
(no chemical potential for simplicity)
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Decoupling of RRW and LRW

Factorization of the density operator in the RRW and LRW
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With operators acting on the Hilbert spaces of the field degrees of freedom in the RRW and LRW
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Quantum field theory in Rindler coordinates

L.C.B. Crispino, A. Higuchi and G.E.A. Matsas, The Unruh effect and its applications, Rev. Mod. Phys. 80 (2008) 787

1 - Klein-Gordon inner product

(b1, ) = i / 05, (61V ¢y — g2 VP )

Y 1s the (arbitrary) spacelike quantization hypersurface

2 — Expand the field into (normalized) eigenfunctions of the KG equation, with positive and
negative frequencies of the normal derivative n MV'““ at the hypersurface




3 — Enforce quantization
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Quantum field theory 1in Rindler coordinates (cont'd)

To calculate mean values with exp (-H/TO), it 1s convenient to quantize in Rindler coordinates.
This requires the introduction of two different coordinates set for the RRW and the LRW
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It can be shown that

‘ IT is the generator of translations along the Killing field lines



The eigenfunctions are the same in both wedges, but the role of creation and destruction
operators 1s interchanged because the positive time direction is opposite to T in the LRW
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Space time diagram
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Thermal-acceleration field theory

Objective: calculate mean values of local operators with density operator

1- Define inner operator product

i [ a5, (31905, - 31vri)

2- Show that

3 — Calculate ITI:




Thermal expectation values of particle number operators

This form of the P operator makes it easy to determine the thermal expectation values
(TEV) of quadratic combinations of Rindler creation and annihilation operators by using the
Familiar method in thermal field theory:
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Renormalizing T.E.V.s

Any quadratic operator in the fields in the RRW will have a T.E.V.
where A and B are operations such as multiplication for a scalar or derivation.
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This term gives rise to an infinite and must be renormalized

The usual renormalization in free-field theory is carried out by subtracting the
Minkowski vacuum contribution. It seems reasonable to do the same here
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Renormalizing T.E.V.s and Unruh effect

These (Minkowski) V.E.V.s are the well known content of the Unruh effect:

Therefore, the renormalization results 1n:
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Which means that the renormalized T.E.V. of any quadratic quantity vanishes when T = a/2%

This conclusion extends to interacting field theories because (Bisognano Wichmann 1975)
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Consequence

All quadratic operators (including the stress-energy tensor) have a vanishing mean value
when T = 2m/a and not when T =0

Note that so when TO = 27/a

T = |A|/21 = Ty

Comoving thermometer sees comoving Unruh
temperature

An ideal thermometer moving along the accelerated world lines in the Minkowski
vacuum state always marks a proper temperature equal to the magnitude of its

proper acceleration divided by 2 7. This must be an absolute lower bound.






Lorentz invariance and an example

The T.E.V. of a Lorentz scalar can only depend on the proper 7 and A

A= 7?2 a*
T2, T~) = F ( 2,30 70

for the canonical stress-energy tensor, there is a quantum-relativistic correction quadratic in
the acceleration.

The exact value corresponds to the first term of the expansion in A” obtained in
F.B., E. Grossi, Phys. Rev. D 92, 045037 (2015)



Conclusions

e Study of thermal equilibrium 1in QFT with acceleration

e The comoving observer — according to the Unruh effect — in the Minkowski
vacuum — sees a thermal radiation. Thus, it 1s reasonable that, there 1s an
absolute lower bound, for an accelerated fluid: T < TU

e This conclusion applies to the global equilibrium and likely related to the Killing
horizon, difficult to extend it to a general local thermodynamic equilibrium



For an interacting scalar field theory:
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Bisognano Wichmann 1975
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