Percolation and Cascading in a Brain Network of Networks

Hernán Makse hysics Department City College of New Yor Jose Soares de Andrade (physics) - Brazil Santiago Canals (neuro)- Alicante Mariano Sigman (neuro)- Bula os Aires Flaviano Morone (physics) CCNY Lucas Parra (neuro) - 🞯 Navier Gabaix (economics) - NYU Fredrik Liljeros (sociology) - Stockholm Capri, August 2015

OUTLINE: two percolation conundra and one application

1. Brain Conundrum 1: The "binding problem" in brain networks

Percolation of information flow in brain networks: Gallos, Makse, Sigman, PNAS (2012)

2. Brain Conundrum 2: Vulnerability to cascades of failure in a brain network of networks

Percolation of NoN: Reis, Canals, Andrade, Sigman, Makse, Nat. Phys. (2014) Optimal Percolation: Morone, Makse, Nature (2015)

3. Application: Emergence of "engagement" in eyetracking and homophily from neural correlations.

Brain conundrum 1: Binding Problem

Brain modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer for, for instance, unitary perception (ie, visual areas analyze simultaneously form, color, motion, etc)

Segregation versus integration at the network level

Prevailing model in neuroscience: Small-world network model

However, there is intrinsic tension between shortcuts generating small-worlds and the persistence of modularity; a global property unrelated to local clustering

Small-world destroys modularity

Watts-Strogatz small world networks

Watts, Strogatz, Nature, 1998

Our hypothesis: strength of weak links

Gallos, Makse, Sigman, PNAS 2012

Inspired by Granovetter paradoxical social theory "Strength of weak ties" (1973)

Strong links form a highly modular non-small world topology in a sea of weak links

Building a functional brain network from fMRI in dual task: visual + auditory

Resting state network: Raichle Eguiluz,et al. PRL (2005)

Correlation between two voxels i, j:

 $C_{ij} = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$

Connect two voxels if correlation is larger than threshold p:

 $C_{ij} > p$

Create a functional brain network

 $C_{ii} = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle$

How to define p?

Bond Percolation

Monitor the size largest cluster versus p

Similar results over all subjects in dual task

Threshold pc is not universal

D

Universality: Similar results in Resting State in humans and rats

Universality: Similar results in Resting State in humans and rats

Brain networks are fractals not small-world

Song, Wang, Makse, Nature (2005)

$$d_f \approx 2.1 \quad N(\ell) \sim \ell^{d_f}$$

Brain networks are also scale-free

Brain networks are fractals not small-world

Song, Wang, Makse, Nature (2005)

$$d_f \approx 2.1 \quad N(\ell) \sim \ell^{d_f}$$

Brain networks are also scale-free

BRAIN AND THE CITY

Obesity percolation

Gallos, Makse, Sci. Rep (2012)

Using CDC data at county level to investigate the spatial spreading of obesity

regions of high number of obese people, BMI>30

Obesity percolation

Gallos, Makse, Sci. Rep (2012)

Using CDC data at county level to investigate the spatial spreading of obesity

epicenter: Greene county, AL

regions of high number of obese people, BMI>30

Obesity percolation

Gallos, Makse, Sci. Rep (2012)

Using CDC data at county level to investigate the spatial spreading of obesity

regions of high number of obese people, BMI>30

Obesity Percolation: same process as in the brain

Wednesday, September 16, 15

Navigation in a Brain NoN: what is the optimal wiring of weak links?

Next: Brain Conundrum 2 Which nodes optimally connect the Brain NoN?

Cascades of failure: two stable scale-free networks are very fragile in a NoN

Internet network

Blackout in Italy 2003

If Network of Networks are so fragile, Why brain NoN are so stable?

Which nodes are responsible for broadcasting information to the whole Network of Networks? Hubs or low degree nodes?

Brain NoN have correlated redundancies

Correlated percolation theory of random failure to test stability under failure

Calculate pc under cascading failure of nodes chosen at random.

$\label{eq:low-pc} Low\ p_c\ is\ optimal: more\ robust\ structure\ and\ faster\ information\ transfer$

Brain NoN are super-optimal Superspreaders in NoN are the hubs

Correlated Brain NoN is Optimal for stability: the less vulnerable structure corresponds to hub-hub connections between networks

Optimal for stability and information transfer

3. Emergent collective behavior from eyetracking

Inspired by collective behavior in starling flocks

Understanding "engagement" of a video

Eye-tracking (measure the eye movement) for 25 viewers of SuperBowl 2014 ads Lucas Parra, CCNY

Eye-movement trajectories

Mapping to a fully connected XY spin-glass to infer pair-wise "interactions" = "homophily"

network of "homophily" through the video

Inferring J_{ij} from the correlation function:

$$C_{ij} = \langle \vec{v}_i \cdot \vec{v}_j \rangle - \langle \vec{v}_i \rangle \cdot \langle \vec{v}_j \rangle$$

Maximum entropy methods: Bialek, 2010

"Specific heat" C_v revels two groups of videos

Measuring the "alertness" or "engagement" of a video as the closeness to the critical temperature:

Summary: an architectural law for functional brain networks

- 1. The functional brain organizes into a NoN made of strong and weak links.
- 2. The spatial arrangement of weak links is optimal for information transfer minimizing wiring cost.
- 3. Network hubs are responsible for broadcasting information to the whole network.
- 4. The resulting correlated NoN is optimal for vulnerability under random failure in contrast to uncorrelated NoN with one-to-one connectivity.