

Network approach for bringing together brain structure and function

Sebastiano Stramaglia

Physics Dept. University of Bari & INFN

BCAM- Basque Center Applied Math Bilbao

> Capri 31 agosto 2015 Complex Collective Dynamics: Brains and beyond

<http://lanl.arxiv.org/abs/1410.7959> Sci. Rep. 2015 Work done with: Paolo Bonifazi (Tel Aviv) Ibai Diez (Bilbao) Iñaki Escudero(Bilbao) Beatriz Mateos (Bilbao) Miguel A. Muñoz (Granada) Jesus M Cortes (Bilbao)

The operational brain: the structural-functional cycle

STRUCTURE

REVIEW SUMMARY

Structural and Functional Brain Networks: From Connections to Cognition

Hae-Jeong Park^{1*} and Karl Friston²

Background: The human brain presents a puzzling and challenging paradox: Despite a fixed anatomy, characterized by its connectivity, its functional repertoire is vast, enabling action, perception, and cognition. This contrasts with organs like the heart that have a dynamic anatomy but just one function. The resolution of this paradox may reside in the brain's network architecture, which organizes local interactions to cope with diverse environmental demands—ensuring adaptability, robustness, resilience to damage, efficient message passing, and diverse functionality from a fixed structure. This review asks how recent advances in understanding brain networks elucidate the brain's many-to-one (degenerate) function-structure relationships. In other words, how does diverse function arise from an apparently static neuronal architecture? We conclude that the emergence of dynamic functional connectivity, from static structural connections, calls for formal (computational) approaches to neuronal information processing that may resolve the dialectic between structure and function.

Science 2013

The conjecture of the brain at criticality

REVIEW ARTICLES | INSIGHT PUBLISHED ONLINE: 1 OCTOBER 2010 | DOI: 10.1038/NPHYS1803

TVSICS

Emergent complex neural dynamics

Dante R. Chialvo^{1,2★}

A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain.

Chialvo D.R. and Bak P. (1999) Bak P and Chialvo D.R. (2001) Eguíluz V.M., Chialvo D.R., Cecchi G., Baliki M, and Apkarian AV. (2004) Chialvo, D. R. (2004) D. Fraiman, P. Balenzuela, J. Foss and D. R. Chialvo (2004) D. R. Chialvo (2010)

Macroscale structural networks: Connectome from Diffusion Tensor Imaging

• It measures the magnitude and orientation of water molecules diffusion within brain tissues

Functional Connectivity

- Statistical dependency between neuronal units (also distant ones)
- Correlation between BOLD time series

Dynamical systems on the connectome: Chialvo, Sporns, Deco, Jirsa, Marinazzo, SS...

Link-wise comparison Ising model

Pairwise link-to-link comparison

From Honey, ... Sporns, PNAS 2009

Multilayer networks

S **Boccaletti**, et al. **Physics Reports** 544 (1), 1-122, 2014

Decomposing the brain in modules

- Important to reduce the variability of anatomical and functional patterns in the class of healthy subjects
- Paradigm signal vs noise -> patient vs healthy
- Parcellations based on anatomy or function, separately, are well known (AAL, RBN, …)
- The question we pose here: is there a decomposition accounting for both structure and function?
- Ans: YES
- What is the most suitable resolution of the modular decomposition to describe the common structure-function modular skeleton?
- Ans: Cross-modularity

Automated Anatomical Labeling parcellation of the brain: 90 anatomical areas

> N. Tzourio-Mazoyer, B. Landeau,D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, Bernard Mazoyer and M. Joliot, NeuroImage 2002

RESTING BRAIN NETWORKS

- Distributed sets of brain regions whose spontaneous activity exhibits a large degree of temporal coherence (Biswal et al., 1995)
- Identified by Independent Component Analysis (ICA)
- a high degree of reproducibility of RSNs both across healthy subjects and across datasets acquired on the same subject.
- RSNs correspond to regions that are known to share and support cognitive functions
- Alterations in resting state networks have been reported in several brain pathologies and diseases

COGNITIVE CORRELATES OF THE RSNs

Traumatic Brain Injury patients

(Noirhomme et al 2010)

Relation between structural and functional networks

Our data set

Structural Connectivity and Functional Connectivity (resting conditions) from the same subject (Bilbao Cruces Hospital)

12 Healthy human subjects, age 33.5 ± 8.7 Resolution: 2514 ROIs

Our approach: comparison at the moduli level

Contrast functional and structural networks by exploiting thier hierarchical modular organization

(Skudalski et al 2008, Betzel et al 2013, Kolchinsky et al 2014)

Cosine distance between ROIs

- •For each ROI, the feature vector is the connectivity to all the 2514 ROIs.
- •For each pair of ROIs, the cosine distance is defined as one minus the cosine between the two feature vectors

Agglomerative Hierarchical Clustering

Comparison at the moduli level

Clustering of rsFC -> ordering for both rsFC and SC

Hierarchical **Clustering** provides a tree of modules

 How to choose the optimal resolution of clustering?

Cross Modularity X

A, B two networks with the same nodes Π a partition of nodes

> $(Q_A L_{AB} Q_B)^{-3}$ 1 $X[\Pi] = \left(Q_A L_{AB} Q_B \right)$

Optimal partition 20 modules

All the modules are characterized anatomically (and have cognitive correlates)

Table S1: Anatomical description of the 20 modules defined after hierarchical agglomerative clustering

(HAC) of rsFC. In the first column, we also provide the module volume and links to the 3D movies are given in the third column.

Some modules are compact

Some are made of anatomically distinct components

The wiring among these components is evident after plotting fibers

Temporal Inf Thalamus Frontal_Inf_Orb Cingulum Mid Cingulum_Ant-Postcentral Caudate Frontal Mid Occipital Mid-Frontal Inf Tri Precentral Hippocampus **Precuneus** Olfactory ParaHippocampal AAL atlas Frontal Sup Frontal Sup Orb-Frontal Mid Orb Frontal Inf Oper Rolandic_Oper Supp_Motor_Area-Frontal Sup Medial Frontal Med Orb-Insula Cingulum_Post-Amygdala Cuneus[.] Lingual Occipital Sup-Overlap Occipital Inf Fusiform Parietal Sup Parietal Inf SupraMarginal Angular-Paracentral_Lobule Putamen Pallidum Heschl with AAL Temporal Sup Temporal Pole Sup-Temporal Pole Mid $\mathsf b$ Sensory-motor and RBN Med Visual Lat_Visual modulesExecutive-control **RSNs DMN**

a

SFMs

Percentage overlap

Robustness

Usefulness of cross-modularity: Real data

- 14 healthy subjects in wakefulness and propofol anesthesia
- 116 ROIs resolution

CM empirical-model functional correlations

CM structural-empirical fc

Conclusions

 Our results show that when trying to correlate brain structure with function, a clear structure-function matching emerges when applying a hierarchical modular approach.

 This new large-scale brain division will have an impact to study brain disorders , as anomalies in this partition might reflect pathologies with both a functional and anatomical character.

www.nitr.org/projects/biocruc_hcatlas

To download the hierarchical partition, the brain networks and the code for cross-modularity