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The operational brain: the structural-functional cycle
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REVIEW SUMMARY

Structural and Functional Brain
Networks: From Connections to
Cognition

Hae-Jeong Park' and Karl Friston?

Background: The human brain presents a puzzling and challenging paradox: Despite a fixed anatomy,
characterized by its connectivity, its functional repertoire is vast, enabling action, perception, and
cognition. This contrasts with organs like the heart that have a dynamic anatomy but just one func-
tion. The resolution of this paradox may reside in the brain's network architecture, which organizes
local interactions to cope with diverse environmental demands—ensuring adaptability, robustness,
resilience to damage, efficient message passing, and diverse functionality from a fixed structure. This
review asks how recent advances in understanding brain networks elucidate the brain's many-to-one
(degenerate) function-structure relationships. In other words, how does diverse function arise from an
apparently static neuronal architecture? We conclude that the emergence of dynamic functional con-
nectivity, from static structural connections, calls for formal (computational) approaches to neuronal
information processing that may resolve the dialectic between structure and function.

Science 2013



The conjecture of the brain at criticality

REVIEW ARTICLES | INSIGHT

PUBLISHED ONLINE: 1 OCTOBER 2010 | DOI:10.1038/NPHYS1803

Emergent complex neural dynamics

Dante R. Chialvo2*

A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the
mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of
cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the
involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical
point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the
brain is naturally poised near criticality, as well as its implications for better understanding of the brain.

Chialvo D.R. and Bak P. (1999)

Bak P and Chialvo D.R. (2001)

Eguiluz V.M., Chialvo D.R., Cecchi G., Baliki M, and Apkarian AV. (2004)
Chialvo, D. R. (2004)

D. Fraiman, P. Balenzuela, J. Foss and D. R. Chialvo (2004)

D. R. Chialvo (2010)



Macroscale structural networks: Connectome
from Diffusion Tensor Imaging

* It measures the magnitude and orientation of water
molecules diffusion within brain tissues
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Functional Connectivity

e Statistical dependency between neuronal
units (also distant ones)

e Correlation between BOLD time series
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Dynamical systems on the connectome: Chialvo, Sporns, Deco, Jirsa, Marinazzo, SS ..



Link-wise comparison Ising model
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Pairwise link-to-link comparison
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Multilayer networks

S Boccaletti, et al. Physics Reports 544 (1), 1-122, 2014



Decomposing the brain in modules

Important to reduce the variability of anatomical and
functional patterns in the class of healthy subjects

Paradigm signal vs noise -> patient vs healthy

Parcellations based on anatomy or function, separately, are
well known (AAL, RBN, ...)

The question we pose here: is there a decomposition
accounting for both structure and function?

Ans: YES

What is the most suitable resolution of the modular
decomposition to describe the common structure-function
modular skeleton?

Ans: Cross-modularity



Automated Anatomical
Labeling parcellation
of the brain: 90
anatomical areas

N. Tzourio-Mazoyer, B.
Landeau,D. Papathanassiou, F.
Crivello, O. Etard, N. Delcroix,
Bernard Mazoyer and M.
Joliot, Neurolmage 2002




RESTING BRAIN NETWORKS

 Distributed sets of brain regions whose spontaneous
activity exhibits a large degree of temporal coherence
(Biswal et al., 1995)

« ldentified by Independent Component Analysis (ICA)

 a high degree of reproducibility of RSNs both across
healthy subjects and across datasets acquired on the same
subject.

« RSNs correspond to regions that are known to share and
support cognitive functions

 Alterations in resting state networks have been reported in
several brain pathologies and diseases
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Traumatic Brain Injury patients

Minimally
Vegetative Conscious
State State Locked-In Syndrome

no aware partial aware (arousal) aware aware
no awake no awake no awake awake (can’t move)

(Noirhomme et al 2010)



Relation between structural and
functional networks




Our data set

Structural Connectivity and Functional
Connectivity (resting conditions) from the
same subject (Bilbao Cruces Hospital)

12 Healthy human subjects, age 33.5 + 8.7
Resolution: 2514 ROIs




Our approach: comparison at the
moduli level

Contrast functional and structural networks by exploiting thier
hierarchical modular organization

(Skudalski et al 2008, Betzel et al 2013, Kolchinsky et al 2014)



Cosine distance between ROls

*For each ROI, the feature vector is the
connectivity to all the 2514 ROls.

*For each pair of ROls, the cosine distance is
defined as one minus the cosine between the
two feature vectors



Agglomerative Hierarchical Clustering
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Need to define the distance between the
new cluster and the other clusters.

Single Linkage:
Complete Linkage: distance between farthest pair.

Average Linkage: average distance between all pairs

distance between closest pair.
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The dendrogram induces a linear ordering
of the data points
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optimal resolution
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Cross Modularity X

A, B two networks with the same nodes
1 a partition of nodes

1

X[} = (QA LABQB )5
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Optimal partition 20 modules




All the modules are characterized anatomically
(and have cognitive correlates)

Table S1: Anatomical description of the 20 modules defined after hierarchical agglomerative clustering
(HAC) of rsFC. In the first column, we also provide the module volume and links to the 3D movies are given

in the third column.

Module number| Anatomical description Link to 3D
(volume size) representation
module 1 Posterior cingulate: posterior area of the cingulate gyrus or

callosal convolution. Located above the corpus callosum, 1t| Movie S1
(7.26 em’) goes from the frontal lobe back to the temporal uncus and up

to the splentum. It belongs to the Default Mode Network.

module 2 Putamen: a round structure located at the base of the| Movie S2
telencephalon. It is also one of the basal ganglia structures.
(104.36 cm’) Anterior cingulate: anterior frontal region of the cingulate

gyrus, initiated above the rostrum of the corpus callosum.
Rostral pars of the middle frontal gyrus: anterior inferior
end of the middle frontal gyrus.

Superior parietal gyrus: parietal gyrus located posterior to
the postcentral gyrus.

Supramarginal gyrus: region in the parietal lobe encircling
the posterior extreme of the Sylvian fissure.

L R I (T . P E R A I PR I |




Some modules are compact




Some are made of anatomically
distinct components




The wiring among these components
Is evident after plotting fibers




Overlap
with AAL

and RBN
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Bilbao data Human Connectome Project
data
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SUBJECT TEMPLATE ASSESSMENT
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Usefulness of cross-modularity:
Real data

* 14 healthy subjects in wakefulness and
propofol anesthesia

e 116 ROIs resolution



CM empirical-model functional
correlations
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cross modularity
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Conclusions

Our results show that when trying to correlate brain
structure with function, a clear structure-function

matching emerges when applying a hierarchical
modular approach.

This new large-scale brain division will have an
impact to study brain disorders , as anomalies in this

partition might reflect pathologies with both a
functional and anatomical character.



www. nitr.org/projects/biocruc_hcatlas

To download the hierarchical partition, the brain networks and
the code for cross-modularity



