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Concept of criticality for the brain 
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Criticality concept for the brain 

Per Bak, 1996, “How nature works”,  
 
“If the brain in the frozen subcritical state, there will be only a local effect of changes <…>. If the brain is in 
a chaotic disordered state with neurons firing everywhere, it is not possible to communicate. Hence, the 
brain must operate at the critical state where the information is just barely able to propagate”. 

Recent modeling studies support this hypothesis,  
 
• Number of metastable states is maximized at criticality (Haldeman and Beggs, 2005) 

 

• Optimal dynamical range of excitable networks at criticality (Kinouchi and Copelli, 2006) 
 

• Maximum dynamic range in cortical networks at criticality (Shew et al., 2009)  
 

• Information capacity and transmission are maximized at balanced networks (Shew et al., 2011)  
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Hallmarks of criticality in the brain  

I. Power-law distribution of avalanches sizes  / spatio-temporal dynamics, 10–3 – 10–1  s 

II. Power-law long-range temporal correlations (LRTCs) / temporal dynamics, 101 – 103  s 
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Evidence for criticality beyond power-laws 

Presence of power-law suggest that system is critical but does not prove it (e.g., Beggs and Timme, 2012) 

- the ability to tune the network from a subcritical 
regime through criticality to a supercritical regime.  

- the existence of mathematical relationships 
between the exponents of the power laws for a 
system 

- the existence of a data collapse  

Friedman et al., 2012, Phys. Rev. Lett.  
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Beggs & Timme, 2012, Front. Physiol.  

Stanley, 1999, APS  

Magnet properties, CH ~ ε–α ; M2 ~ ε2β ; χT ~ ε –γ 
 

α + 2β + γ = 2 
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Story of neuronal avalanches  

1. Superficial cortical layers 
 

Originally neuronal avalanches have been observed for superficial layers only. 

“All evidence so far suggests that it is not the brain that is 
critical, but it is its cortical core, the superficial layers”. 

Beggs & Plenz, 2003, 2004, J. Neurosci.; Gireesh & Plenz, 2008, PNAS; Petermann et al., 2009, PNAS  

2. “Homogeneous” neuronal networks 
 

Originally neuronal avalanches have been observed at sub-millimeter scale where the 
structure of neuronal networks is relatively homogeneous.  

(in tissue cultures, acute slices, anesthetized rats, awake rhesus monkeys) 

Plenz, 2012, APC 

Beggs & Plenz, 2003, 2004, J. Neurosci.; Gireesh & Plenz, 2008, PNAS; Petermann et al., 2009, PNAS  
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Modern story of neuronal avalanches 

1. Superficial cortical layers & others 

Invasive recordings in vivo [10–2 – 102 mm, 10–4 – 10–2 s]. 

2. “Homogeneous” & “structured” neuronal networks 

Recent studies emphasize the strong impact of topology of neuronal networks on critical 
dynamics.  

Hahn et al., 2010; Solovey et al., 2012; Priesmann et al., 2013; Zhigalov et al., 2015 

Non-Invasive recordings in vivo [1 – 102 mm, 10–3 – 1 s]. 

Allegrini et al., 2010; Tagliazucchi et al., 2012; Shriki et al., 2013; Palva et al., 2013 

Importantly, the scaling exponents of avalanche size distribution differ between the studies. 

Moretti & Munoz, 2013, Nat. Commun; Ciuciu et al., 2014, NeuroImage; Hilgetag et al., 2014,Tren. Cogn. Sci. 
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Critical dynamics in neuronal, behavioral and physiological data 
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Hari & Parkkonen, 2015, Phil. Trans. Soc. 
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MEG source reconstruction  
 
• BEM head model 
• Distributed sources model, 

minimum norm estimator 

2 



Experiment type 1 / Resting state 

Neuronal activity 

Recording computer 

Subject 

In the experiment subject is instructed to focus on the circle/cross on monitor screen 
without performing any mental task. 
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? 

Behavioral responses 

misses 

hits 

Experiment type 2, Behavioral task 

Neuronal activity 

Recording computer 

In the experiment subject is instructed to press the button whenever he/she is able to 
detect a ”weak” visual stimulus. The stimuli are presented at random times. 

Subject 
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Neuronal LRTCs in task and rest are correlated with LRTCs of behavioral performance. 
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Behavioral and neuronal criticality 

Palva et al., 2013, PNAS 

f = 10 Hz 
r = corr (βBV, βNR) 

VISUAL TASK 

AUDITORY TASK 

f = 10 Hz 
r = corr (βBA, βNR) 
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Ivanov et al., 1999, Nature 

Exponents of autonomous nervous system are correlated with those of central neural system. 
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Zhigalov et al., 2015, J. Neurosci.  

The strongest correlations have been observed in specific functional systems. 

Functional specificity of correlations between the exponents of heart-rate variability and 
neuronal oscillations. 
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Conclusion on neuronal, behavioral and physiological criticality 

Critical dynamics are related at multiple levels neuronal, physiological 
and behavioral 

The dynamics are linked through specific projections/regions in the 
brain 

The dynamics can be manipulated by cognitive task, stimulation, drugs 
and so on 

Abnormalities in critical dynamics can be considered as indicator of some 
neurological disorders  
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Critical dynamics and connectivity 
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What is the human connectome? 

A connectome is a comprehensive map of neural connections in the brain. 
Wikipedia 

There are a few types of human connectomes have been introduced, 
 
• DTI connectome / structural – characteristics of axonal fibers that link brain regions 

(length, density, etc.) 
 

• fMRI connectome / functional – relationship between BOLD (blood oxygenation) signals 
of the brain regions  
 

• EEG/MEG connectome / functional – relationship between neuronal fluctuations of the 
brain regions 

Connectome is represented normally as an adjacency matrix. 
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The connectomes 3 

Avalanche propagation connectome (APC) / new 

LRTCs scaling exponents connectome (SEC) / new 

Amplitude-amplitude correlation connectome (AAC) 

Phase-phase coupling connectome (PPC) 
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Parameters (for avalanche detection) 

Avalanche propagation connectome (APC) 

• T is threshold  

• Δt is time bin width 
Zhigalov et al., (submitted) 

Broadband time series (1 – 40 Hz) 
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Parameters (for avalanche detection) 

• T is variable, 2, 3 and 4 SD 
• Δt is fixed, 8 ms 

Propagation pathways of neuronal avalanches show different properties for different ”SNR”. 
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Peng et al., 1995, Chaos 

LRTCs scaling exponents connectome (SEC) 

Parameters (for long-range temporal correlations, LRTCs) 

• f is frequency of neuronal oscillations (3, …, 120 Hz) 

f = 10 Hz 

Note  
 

• Neuronal oscillations in the range of 0.1 – 70 Hz are functionally relevant for the brain and “unique” 
• High frequencies are associated with local processing, while low frequencies with global processing 
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The relationship between LRTCs of the brain regions is similar across subjects. 
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Narrowband time series 

Brookes et al., 2012, NeuroImage 

Palva & Palva, 2012, TICS 
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Result I 

Similarity between the connectomes 
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How do we assess similarity between the connectomes? 

The method is less sensitive to outliers (large values) in comparison to correlation coefficient. 
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Results I / Similarity of the connectomes 
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from Result I to Result II 

The similarity between the connectomes indicated that the connections are co-
localized. 

However, the similarity between connections doesn’t imply that these 
connections belong to the same modules or subgraphs. 
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Result II 

Similarity of the modular structure of the connectomes 
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Modular structure of the brain networks 

The human brain shows hierarchical modular organization. 

The modules are ”weakly” linked. 

Power et al., 2011, Neuron  Tie density 
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Balenzuela et al., 2010, Front. Neuroinf. 

Meunier et al., 2010, Front. Neurosci. 

Gallos et al., 2012, PNAS 
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right 

How do we assess similarity of modular structure of the connectomes? 

K = 7 (per hemi) 
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Conclusion on criticality and connectivity 

Dynamics of neuronal avalanches and long-range temporal correlations 
are related in both spatial and temporal domains 

High amplitude events, i.e. neuronal avalanches, propagate along 
functional connections and can be operationally relevant for the brain 

Neuronal avalanches may provide an alternative communication 
mechanism which is different from amplitude- and phase-coupling 

Hierarchically organized and weakly coupled brain modules provides the  
dynamics-connectivity association 
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Thank you for your attention! 


